BORIDE BASED ELECTRODE MATERIALS UNDER EXTREM CONDITIONS FOR MHE WE POWER EXTRACTION

Indrajit Charit (PI), <u>Krishn n S Raja (</u>co-K Steven Sitler (Ph.D Candidate), Cody Hi

> Chemical and Materials Engineer University of Idaho, Moscow, IL 83844

> > ksraja@uidaho.edu

ACKNOWLEDGEMENTS

DOE Grant Number: DE-FE0022988

University Coal Research, National Energy Technology Laboratory

Program Manager: Dr. Jason Hissam

Award Administrator: Amanda Lopez

INTRODUCTION

Magnetohydrodynamic (MHD) Direct Power Extraction

Flame temperature: > 3000 K

<u>Atmosphere</u>: Oxidizing with possible atomic oxygen present in the plasma

Potassium salt for conductivity leading to hot corrosion at 1700 – 2200 K

Electrode materials should have high electrical conductivity, good thermal shock resistance, and durability in aggressive environments.

INTRODUCTION Hafnium and Zirconium Diborides

- HfB₂-ZrB₂ solid solution
 - Superior electrical conductivity
 - Oxidation resistance
 - Extremely high melting point

Currently investigated for thermal protection systems of re-entry space craft vehicles, electrodes for EDM, and protective coatings for micro-electronics.

> Tye, R. P., Clougherty, E. V. (1970). The Thermal and Electrical Conductivities of Some Electrically Conducting Compounds. Proceedings of the Fifth Symposium on Thermophysical Properties, Newton, Massachusetts, 396-401

Α

From: T.A. Parthasarathy et al., Acta Materialia, 55 (2007) 5999.

$$ZrB_2 + 5/2 O_2 \rightarrow ZrO_2 + B_2O_3$$

I

 $B_2O_3 (I) \rightarrow B_2O_3 (g) (> 1100 \ ^{\circ}C)$

Vapor pressure of boria at 1800 °C : 1.3 x 10⁴ Pa

High Temperature Oxidation of ZrB₂ with addition of SiC

concept of t

Research Approach

1) Provide a thin, continuous, and impervious oxide layer to improve the oxidation resistance without significantly losing the electrical conductivity

2) Incorporate RE oxides La_2O_3 and Gd_2O_3 to improve the oxidation resistance by forming cubic pyrochlore phases

3) Forming metal rich borides with addition of higher valent elements to hinder diffusion of oxygen in the oxide layer

PROCESSING

Mechanochemical synthesis

- Achieved through ball milling
 - SPEX 8000M Mixer/mill
- Steel milling media caused contamination
- 3 mol% Yttria stabilized zirconia grinding media and vial were used
 - 1:10 powder to ball ratio
 - 3 hour milling time
 - 6.5 mm diameter

PROCESSING

Sintering

- Conventional Sintering
 - Compacted pellets at ~1.0 kN
 - Sintered in argon at 1700 °C
- Spark Plasma Sintering
 - 5 kN force
 - 10⁻³ torr vacuum
 - 1700 °C

PROCESSING

Sample Identifier	Composition	SPS Hold Time (s)
А	HfB ₂	180
В	ZrB ₂	600
AB	1:1 HfB ₂ _ZrB ₂	600
A4B	1:4 HfB ₂ - ZrB ₂	600
4AB	4:1 HfB ₂ - ZrB ₂	600
ABT	1:1 HfB ₂ - ZrB ₂ + Ta (B/Me = 1.86)	180
ABZ	1:1 HfB ₂ - ZrB ₂ + Zr (B/Me = 1.86)	180
АВН	1:1 HfB ₂ - ZrB ₂ + Hf (B/Me = 1.86)	180
ABL	1:1 HfB ₂ - ZrB ₂ + 1.8 mol % LaB ₆	300
ABG	1:1 HfB ₂ - ZrB ₂ + 1.8 mol % Gd ₂ O ₃	300

CHARACTERIZATION

Electrical resistivity

- Polarization Resistance
- Gamry Interface 1000

•
$$\rho = \frac{AR}{L}$$

Hardness

- Vickers microhardness
- LECO LM1000

Density

- Archimedes principle
- Ohaus Explorer Pro

•
$$\rho = \frac{M_{air}}{M_{air} - M_{water}} (\rho_{water} - \rho_{air}) + \rho_{air}$$

Microstructure Analysis:

Grain size by back scattered SEM

BSE FESEM micrograph of SPSed Hf0.5Zr0.5B2

LATTICE PARAMETERS

Vegard's Law for SPSed $Hf_{(1-x)}Zr_{(x)}B_2$

CHARACTERIZATION

Sample Identifier	Density (g/cm³)	Relative Density (%)	Hardness (GPa)	Electrical Resistivity (μΩ- cm)	Grain Size (μm)
HfB ₂	9.594	91.4	20.07	9.2	3.6 ± 1.6
ZrB ₂	5.308	87.2	12.86	6.79	3.1 ± 1.8
Hf _{0.5} Zr _{0.5} B ₂	6.346	76.2	-	5.4	3.3 ± 2.1
Hf _{0.2} Zr _{0.8} B ₂	5.796	82.9	3.13	6.0	2.3 ± 1.4
Hf _{0.8} Zr _{0.2} B ₂	7.377	76.5	8.32	9.3	3.7 ± 1.6
Hf _{0.5} Zr _{0.5} B ₂ +Ta	8.215	94.6	-	17.3	-
Hf _{0.4} Zr _{0.6} B _{1.86}	7.801	94.8	5.82	8.4	-
Hf _{0.6} Zr _{0.4} B _{1.86}	8.250	96.2	12.04	11.6	-
$Hf_{0.5}Zr_{0.5}B_2 + LaB_6$	7.957	97.2	-	12.2	-
$Hf_{0.5}Zr_{0.5}B_2 + Gd_2O_3$	7.418	89.5	-	12.4	-

Electrochemical corrosion studies in aqueous solutions

Purpose: To rank the compositions for testing in hot corrosion environments

Resistance to room temperature aqueous corrosion can be translated to high temperature corrosion resistance in the presence of relevant species

Potentiodynamic polarization studies using three-electrode configuration

- 0.1 M H₂SO₄
- 0.1 M NaCl
- 0.1 M NaOH
- 0.1 M NaOH + 0.1 M NaCl

Reference electrode: Ag/AgCl in saturated KCl

Counter electrode: Platinum foil

ANODIZATION

- Anodized $HfB_2 + ZrB_2$
 - Ethylene Glycol
 - 4% H₂O
 - 0.14 M NH₄F
 - Potassium Hydroxide
 - $H_3PO_4 + NaF$
 - Potential: 10 60 V
 - Time: 30 60 minutes
 - Counter electrode: Ti foil

THERMOGRAVIMETRIC ANALYSIS

- Netzsch STA 409 PC Luxx
 - 3 °C/min ramp rate
 - 1500 °C for 2 hours
 - Argon > $pO_2 = 0.1 Pa$
 - Oxygen > $pO_2 = 0.3 \times 10^5 Pa$
 - CO/CO₂: > PO₂ = 1 x 10⁻⁸ Pa

RESULTS & DISCUSSION

SOLID SOLUTION

XRD analysis of mechanochemically synthesized $HfB_2 + ZrB_2$ showed a successful solid solution mixture

ANODIZATION

EG + 0.14 M NH₄F, 30 V, 30 min.

0.1 KOH, 40 V, 30 min.

0.1 KOH, 40 V, 120 min.

Double anodized EG + 0.14 M NH_4F , 20 V, 30 min. + 0.01 M F, 30 V, 30 min.

Leached in H_3PO_4 + NaF and anodized in EG + 0.01 M F⁻, 30 min. + 0.01 M F, 40 V, 30 min.

daho

AQUEOUS CORROSION - 0.1 M SODIUM CHLORIDE

AQUEOUS CORROSION – 0.1 M SODIUM HYDROXIDE

AQUEOUS CORROSION – CHLORIDE IN BASIC SOLUTION

S.J. Sitler, C. Hill, K.S. Raja, I. Charit, HT Oxidation of ZrB_2 +HfB₂ Solid Solution with LaB₆ Addition, *Metall. Mater. Trans. E*, in press, doi: 10.1007/s40553-016-0072-2

TGA Results of ZrB₂+HfB₂+LaB₆ in Mixture of CO + CO₂

S.J. Sitler, K.S. Raja, I. Charit, High Temperature Oxidation Study of Hafnium & Zirconium Diborides: MHD Electrode Coatings, to be presented in MS&T 2016

TGA Results: Argon + Oxygen (0.1 Pa), and 0.3 bar O₂.

S.J. Sitler, C. Hill, K.S. Raja, I. Charit, HT Oxidation of ZrB_2 +HfB₂ Solid Solution with LaB₆ Addition, *Metall. Mater. Trans. E*, in press, doi: 10.1007/s40553-016-0072-2

TGA Results of ZrB_2 +HfB₂+LaB₆ in Mixture of CO + CO₂

PARABOLIC RATE CONSTANTS

Sample	Rate constant (k _p), mg²/cm⁴ h	Log (k _p , kg²/m⁴ s)
ABL as-sintered	1174.2	-4.49
ABL anodized	1053.0	-4.53
AB as-sintered	1682.4	-4.33
AB anodized	692.4	-4.72

LaB₆ containing ZrB₂+HfB₂ Oxidized in different conditions

AVERAGE COMPOSITION BY EDS

Element	ABL Anodize	ABL Anodized (mole %)			
	Base	As-Anodized	Oxidized in argon	Oxidized in oxygen	
Zr		46.7	-	57.0	
La		1.4	-	0.1	
Hf		52.0	-	42.9	
	AB Anodized	AB Anodized (mole %)			
	Base	As-anodized	Oxidized in argon	Oxidized in oxyger	
Zr		39.1	65.2	53.1	
Hf		60.9	34.8	46.9	
	ABL As-sinte	ABL As-sintered (mole %)			
	Base		Oxidized in argon	Oxidized in oxyger	
Zr	48.9		48.9	-	
La	02.0		0.6	-	
Hf	49.1		50.1	-	
	AB As -sinte	AB As -sintered (mole %)			
	Base		Oxidized in argon	Oxidized in oxyger	
Zr	54.5		55.0	55.4	
Hf	45.5		45.0	44.6	

SEM OF OXIDE OF AS-SINTERED SPECIMENS

University of Idaho

OXIDE THICKNESS COMPARISON

Oxide Layer Thickness Measurements				
Sample	Anodized samples (μm)			
	Initial thickness of anodic oxide	Oxidized in argon	Oxidized in oxygen	
ABL	20	70	180	
AB	20	30	160	
	As-sintered samples (µm)			
		Oxidized in argon	Oxidized in oxygen	
ABL		80	210	
АВ		20	200	

CONCLUSIONS

- Elemental and commercial powders of both HfB₂ and ZrB₂ are confirmed to be essentially equivalent.
- The mechanochemical synthesis has been confirmed by XRD to produce a solid solution.
- Electrical resistivity measurements of the base materials shows that a 1:1 mixture of HfB₂ and ZrB₂ has been conductivity than either of the individual borides.
- Anodization does aid in reducing oxidation.
- LaB₆ additive appears to give the highest increase in densification of all the additives tested and increase in the oxidation resistance

Outcomes:

A masters student has graduated with M.S degree

Three presentations have been made in the international conferences

One manuscript has been accepted for publication in Metallurgical and Materials Transactions-E.

Three manuscripts are in preparation and will be submitted by June 2016 for peer review

LATTICE PARAMETERS

To calculate lattice parameter, *a*, take XRD reflections of *hk*0 type.

$$a = \frac{\lambda}{\sqrt{3}sin\theta}\sqrt{h^2 + hk + k^2}$$
 Eq. 1

To calculate lattice parameter, *c*, take XRD reflections of 00/ type.

