Vertically Aligned Carbon Nanotubes Embedded in Ceramic Matrices for Hot Electrode Applications

Yongfeng Lu and Yunshen Zhou

Laser Assisted Nano Engineering Lab Department of Electrical and Computer Engineering University of Nebraska-Lincoln Lincoln, Nebraska Email: ylu2@unl.edu http://lane.unl.edu

Outline

- 1. Goal and Objectives
- 2. Background and Motivations
- 3. Accomplishments
 - 1) Building a water-vapor-assisted chemical vapor deposition (WVA-CVD) system
 - 2) Growing ultralong vertically aligned carbon nanotubes (VACNTs)
 - 3) Fabricating VACNT-Cu structures
 - 4) Building a laser-assisted chemical vapor deposition (LCVD) system for growing BN
- 4. Deliverables
- 5. Planned Activities in the Next-Phase
- 6. Student Training

1. Goal and Objectives

Primary goal: Develop CNT-BN composite structures in which VACNTs are embedded in BN matrices for hot electrode applications in magnetohydrodynamics (MHD) power systems.

1. Goal and Objectives

Objectives:

- 1. Super growth of VACNT carpets
- 2. Fabrication of CNT-BN composite structures
- 3. Stability and resistance studies of the CNT-BN composite structures
- 4. Thermionic emissions from the CNT-BN composite structures

U.S. Electricity Generation (2010)

< 39

~ 65%

Natural gas

MHD

U.S. Electricity Generation (2013)

"Upstream" Sub-Group in collaboration with VGB, 2003

http://www.mpoweruk.com/mhd_generator.htm

Magnetohydrodynamic Power Generation (Principle)

1) Only working fluid is circulated without moving mechanical parts;

- 2) The ability to reach full power level almost directly.
- 3) Lower infrastructure cost than conventional generators.
- 4) A very high efficiency (60% for a closed cycle MHD).

http://en.wikipedia.org/wiki/Magnetohydrodynamic_generator#Generator_efficiency

Material Challenges for a MHD Generator

Requirement	Remarks		
Electrical conductivity (σ)	σ > 1 S/m, flux ≈ 1 amp/cm ²		
Thermal conductivity (k)	High heat flux from the combustion fluids at 2400 K		
Thermal stability	Melting point (T _m) above 2400 K		
	Resistant to an oxygen partial pressure about 10 ⁻² atm		
Oxidation resistance	at 2400 K		
Corrosion resistance	Potassium seeds and aluminosilicate slags		
Erosion resistance	High velocity hot gases and particulates		
Thermain wie empired	The anode and cathode should be good acceptor and		
inermionic emission	emitters, respectively.		

	CNTs
Electrical conductivity (σ)	10 ⁶ – 10 ⁷
Thermal conductivity (<i>K</i>)	200 – 3000
Thermal stability	T _m > 1726 °C
Oxidation resistance	~ 750 °C
Corrosion resistance	Yes
Erosion resistance	Yes
Thermionic emission	Yes

Y. Won, Y. Gao et al., PNAS, 2013, 110(51), 20426-20430.

1000 X current density of copper
5 X electrical conductivity of copper
15 X thermal conductivity of copper
1/7 density of copper and ¹/₂ or Al

3,500 pounds of Cu and 147,000 pounds of Al in a Boeing 747

	BN
Electrical conductivity (σ)	Insulating
Thermal conductivity (<i>K</i>)	600 - 740
Thermal stability	T _m = 2973
Oxidation resistance	~ 1500 °C
Corrosion resistance	Yes
Erosion resistance	Yes
Thermionic emission	N.A.

http://www.graphene-info.com/3d-white-graphene-could-cool-electronics

	Graphene	h-BN
Space group	P ₆₃	P ₆₃
Lattice constant, <i>a</i> (Å)	2.46	2.50
Lattice constant, <i>c</i> (Å)	6.70	6.66
Thermal expansion coefficient (10 ⁻⁶ °C ⁻¹)	-1.5 ∥, 25 ⊥	-2.7 ∥, 38⊥

Within the basal planes (\parallel) and perpendicular to them (\perp)

It is feasible to insert BNNTs in CNTs, and vice verse.

http://www.nature.com/articles/srep01385

Proposed Solution: CNT-BN Composite Structures

- VACNTs: Electrical and thermal conductive channels.
- BN: Protective layer shielding CNTs from erosive and corrosive environments.

Property	BN	CNT
Melting point (°C / K)	2973 / 3246	> 1726 / 2000
Chemical inertness	Inert to acids but soluble in alkaline molten salts and nitrides	Yes
Oxidation resistance in open air (°C / K)	1500 / 1773	< 750 / 1023
Electrochemical passiveness	Yes. Used as electrode.	Yes.
Electrical conductivity (S/m)	Insulating	10 ⁶ - 10 ⁷
Thermal conductivity [W/(m·K)]	600 - 740	Up to 3000

- 1) Building a water-vapor-assisted chemical vapor deposition (WVA-CVD) system
- 2) Growing ultralong vertically aligned carbon nanotubes (VACNTs)
- 3) Fabricating VACNT-Cu structures
- 4) Building a laser-assisted chemical vapor deposition (LCVD) system for growing BN

- Building a WVA-CVD system

Dry Rotary Pump

Two-Zone Tube Furnace

Gas Cylinders and Four-Way MFC Station

3. Accomplishments - Building a WVA-CVD system

A water-vapor-assisted (WVA)-CVD system was established.

VACNTs on Cu using WVA-CVD Single-temperature-zone

	Catalyst pretreatment	Feeding H ₂ O	CNT growth	Flushing	Cooling
	750	750	750	750	750
T (°C)	RT				RT
Time (min)	20	0	15	1	> 60
Ar (sccm)	1000	1000	400	1000	1000
H ₂ (sccm)			400		
C₂H₄ (sccm)			Variable		
Ar for carrying H ₂ O vapor (sccm)		60	60	60	
Catalyst	Fe / Al (nm / nm) : 3 / 20				

C ₂ H ₄ flow rate (sccm)	100	150	200	
Optical image	li cm	l cm	<u>1 cm</u>	
Raman spectrum	$\begin{bmatrix} 15000 & I_{D}/I_{G} = 1.49 \\ 0 & D-Band 1344 \\ 0 & G-Band 1591 \\ 0 & G-Band 2697 \\ 0 & G-Band 2697$	$(10000 - 10^{10} G = 1.45 D-Band 1345 - 0.6Band 1592 - 0.6G-Band 2696 - $	$\begin{array}{c} 20000\\ (1)\\ (1)\\ (1)\\ (2)\\ (1)\\ (1)\\ (2)\\ (1)\\ (2)\\ (1)\\ (1)\\ (2)\\ (1)\\ (2)\\ (1)\\ (2)\\ (1)\\ (2)\\ (1)\\ (2)\\ (1)\\ (2)\\ (2)\\ (1)\\ (2)\\ (2)\\ (2)\\ (2)\\ (2)\\ (2)\\ (2)\\ (2$	

					1
	Catalyst pretreatment	Feeding H_2O	CNT growth	Flushing	Cooling
	750	750	750	750	750
T (°C)	RT				RT
Time (min)	20	0	Variable	1	> 60
Ar (sccm)	1000	1000	400	1000	1000
H ₂ (sccm)			400		
C ₂ H ₄ (sccm)			200		
Ar for carrying H ₂ O vapor (sccm)		60	60	60	
Catalyst	Fe / Al (nm / nm) : 3 / 20				

Growth time 20 25 30 (min) SEM micrograph 30 µm 30 µm 50 µm D-Band 1350 30000 - **I_D/I_G = 1.57** D-Band 1354 $I_{\rm D}/I_{\rm G} = 1.48$ I_D/I_G = 1.41 D-Band 1345 20000 10000 G-Band 1599 G-Band 1591 Intensity (a.u.) Intensity (a.u.) 10000 G-Band 1602 Intensity (a.u.) Raman G'-Band 2698 G'-Band 2699 G'-Band 2672 5000 spectrum 2500 3000 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 500 1000 1500 2000 Raman Shift (cm⁻¹) Raman Shift (cm⁻¹) Raman Shift (cm⁻¹)

Variable humidity investigated

	Catalyst pretreatment	Feeding H ₂ O	CNT growth	Flushing	Cooling
- (1-)	750	750	750	750	750
T (°C)	RT				RT
Time (min)	20	0	40	1	> 60
Ar (sccm)	1000	1000	400	1000	1000
H ₂ (sccm)			400		
C ₂ H ₄ (sccm)			200		
Ar for carrying H ₂ O vapor (sccm)		Variable	Variable	Variable	
Catalyst	Fe / Al (nm / nm) : 3 / 20				

Only random CNTs were obtained on Cu.

Direct growth of well aligned ultralong VACNTs on Cu turns out to be a very challenging task.

VACNTs on SiO₂/Si using WVA-CVD Single-temperature-zone reactor

	Catalyst pretreatment	Feeding H ₂ O	CNT growth	Flushing	Cooling
	750	750	750	750	750
T (°C)	RT				RT
Time (min)	20	5	10	1	> 60
Ar (sccm)	600	600	540	600	1000
H ₂ (sccm)	400	400	360	400	
C ₂ H ₄ (sccm)			100		
Ar for carrying H ₂ O vapor (sccm)		50	50	50	
Catalyst	Fe/Al ₂ O ₃ (to	p to bottom)		Variable	

- Growing ultralong VACNTs

	Catalyst Pretreatment	Feeding H ₂ O	CNT Growth	Flushing	Cooling
	750	750	750	750	
T(°C)	RT				RT
Time(min)	20	5	40	1	>60
Ar(sccm)	200	200		200	500
H ₂ (sccm)	300	300	300	300	
C ₂ H ₄ (sccm)			Variable		
H ₂ O carrier gas Ar(sccm)		25	25	25	
Catalyst	Fe/Al ₂ O ₃ (nm/nm): 2/20				

C₂H₄ flow rate 100 200 (sccm) SEM micrograph 200um 100um 1200 D-Band 1348 D-Band 1340 G-Band 1582 G-Band 1574 1000 2000 800 Intensity (a.u.) 00 Intensity (a.u.) 600 Raman spectrum 400 200 0 -200 2500 500 1000 1500 2000 0 500 1000 1500 2000 2500 0 Raman Shift (cm⁻¹) Raman Shift (cm⁻¹)

					-
	Catalyst Pretreatment	Feeding H ₂ O	CNT Growth	Flushing	Cooling
	750	750	750	750	
T(°C)	RT				RT
Time(min)	20	5	variable	1	>60
Ar(sccm)	200	200		200	500
H ₂ (sccm)	300	300	300	300	
C ₂ H ₄ (sccm)			200		
H ₂ O carrier gas Ar(sccm)		25	25	25	
Catalyst	Fe/Al ₂ O ₃ (nm/nm): 3/20				

VACNTs on SiO₂/Si using CVD Dual-temperature-zone reactor Without water vapor

	Catalyst Pretreatment	CNT Growth	Flushing	Cooling
	750	750	750	
T(°C)	RT			RT
Time(min)	20	60	1	>60
Ar (sccm)	600	600	600	1000
H ₂ (sccm)	400	400	400	
C ₂ H ₄ (sccm)		200		
Catalyst	Fe/Al ₂ O ₃ (nm/nm) - Variable			

	Catalyst Pretreatment	CNT Growth	Flushing	Cooling
	750	750	750	
T(°C)	RT			RT
Time(min)	20	60	1	>60
Ar(sccm)	600	600	600	1000
H ₂ (sccm)	400	400	400	
C ₂ H ₄ (sccm)		variable		
Catalyst	Fe/Al ₂ O ₃ (nm/nm): 2/20			

VACNT length vs C₂H₄ flow rate, while all other parameters were fixed

- Growing ultralong VACNTs

	Catalyst Pretreatment	CNT Growth	Flushing	Cooling
	750	750	750	
T(°C)	RT			RT
Time(min)	20	variable	1	>60
Ar(sccm)	600	600	600	1000
H ₂ (sccm)	400	400	400	
C ₂ H ₄ (sccm)		70		
Catalyst	Fe/Al ₂ O ₃ (nm/nm): 2/20			

T = 15 minT = 30 min(a) (b) CNT 500um 1mm (c) $T = 45 \min$ $T = 60 \min$ (d) CNT CNT 1 mm

VACNTs up to 4 mm long were obtained via a thermal CVD method using a dual-temperaturezone reactor without using water vapor.

03/neptunes daughters.html

IR laser irradiation or thermal treatment

SiO2/Si

VACNTs

Cu-Ni alloy

Formation of a carbide interfacial layer to ensure
stable contact with metallic thermal and electrical conductivity

(a)		(b)	
(c)	Heating	Annealing	Cooling
T(°C)	550 RT	550	RT
Time(min)	15	30	air cooled to RT
Ar(sccm)	500	500	500
(d)		(e)	

VACNT-Cu structures were fabricated via using a nickel carbide interfacial layer.

Thermal stage

Growing c-BN from BF_x and NH_x species (x = 0, 1, 2, 3) in an H/F-saturated gas

Johan Karlsson, Theoretical Routs for c-BN Thin Film Growth, Dissertation presented at Uppsala University

Supercells of the H- or F-covered (A) B- and (B) N-terminated c-BN(100) surfaces.

Blue ball:	Ν	
Pink ball:	B	
Grey ball:	H or F	

Johan Karlsson, Theoretical Routs for c-BN Thin Film Growth, Dissertation presented at Uppsala University

Optical images of NH₃ flows when irradiated at different laser wavelengths in open air.

OES spectra of NH₃ under laser irradiation at different wavelengths in open air.

A LCVD system was established.

- Summary

- 1) Established a WVA-CVD system
- 2) Obtained ultralong VACNTs upto4 mm long
- 3) Obtained VACNT-Cu structure
- 4) Establishing a LCVD system

4. Deliverables

CNT.

1. Ultralong VACNTs up to 4 mm

2. VACNT-Cu structure

- 3. WVA-CVD system

4. LCVD system

5. Planned Activities in the Next-Phase

- Growing VACNT patterns (accommodating BN among CNTs);
- 2. Fabricating VACNT-Cu structure that can work at a temperature above 2000 °C;
- 3. Growing BN using the LCVD method;
- 4. Fabricating VACNT-BN-Cu structure;
- 5. Studying electrical and thermal properties of the VACNT-Cu and VACNT-BN-Cu structures; and
- 6. Investigating thermal stability of the VACNT-BN and VACNT-BN-Cu structures.

6. Student Training

Student	Program	Training
Qiming Zou	PhD student at UNL	Under the support of this project, he was trained with all required experiments and data analysis related to fabricating and characterizing VACNTs, BN, VACNT-Cu, and VACNT- BN-Cu .
Kamran Keramat nejad	PhD student at UNL	Growing ultralong VACNTs for fabricating well-aligned CNT sheets and fibers.
Rachel Jarvis	High- school student at Lincoln North East High School	As a Young Nebraska Scientist Summer High School Researcher, she was trained operating a mask aligner, sputtering system, and WVA-CVD system. In addition, Rachel was able to grow ultralong VACNTs.

Acknowledgements

We would like to express our heartfelt thankfulness for the Department of Energy and National Energy Technology Laboratory (Grant Number: DE-FE0023061) for the generous financial support.

Thank you!

