

Low-Energy Water Recovery from Subsurface Brines

DOE Award No. DE-FE0024074

RTI International: Zachary Hendren, Young Chul Choi, Gyu Dong Kim, Martin Lail, Mustapha Sukori

Crosscutting Research & Rare Earth Elements Portfolio Review April 21st 2016, Pittsburgh, PA

Project Overview & Objectives

- DOE Award No. DE-FE0024074
- Total project value: 937,500\$
 - DOE Share: 750,000\$ (80%)
 - Cost Share: 187,500\$ (20%)
- Period of Performance:
 - Sep. 2015 to Feb. 2017 (18mos.)
- Project Team:
 - RTI International (Prime recipient)
 - Tampa Electric Company (TECO)

Project Objectives:

- Develop of a low-cost, low-energy treatment process using a nonaqueous solvent (NAS) extraction to recover water from deep aquifer brine
 - 1) Identify candidate solvents that can absorb water in one condition and release in another condition
 - Test different solvents and/or mixture of solvents for optimum water uptake and release to maximize water recovery from 180,000 ppm TDS brine
 - Develop optimum conditions to maximize the kinetics of the process
 - 4) Test water quality and if necessary, develop downstream process to satisfy potable water standard
 - 5) Develop strategies to optimize the overall process and perform techno-economic assessment for scale up

Project Background – Deep-well CO₂ Injection

- Deep-well CO2 injection can create pressure build-up in the subsurface aquifer. A portion of ground water should be extracted to relieve the pressure.
- The ground water (brine) may contain very high total dissolved solids (TDS) concentration, in the range of 180,000 ppm
- These dissolved contaminants that make up TDS are generally some of the most difficult constituents to remove.
- The values for TDS with increasing depth from a well water sample are shown in the figure
- Because TDS removal remains an issue across the industry, The impact of developing a technology to treat these wastewaters would extend beyond power plant and fossil fuel-based industries

Subsurface plot showing the increasing TDS concentration in water with depth at TECO CO₂ site

Existing Water Management Practices and Treatment Technologies

Current Water Management Practices

- Approximately 2 billion tons of CO2 are emitted annually from power plants in the U.S.
- 3.2 billion m³/yr (~2,300 MGD) gallons of brine will be produced to store this amount of CO₂ in injection wells.
- In unconventional resource extraction, most high concentration brines generated in the U.S. are currently disposed of in Class II deep injection disposal wells, which often require a long distance transportation (>100 miles)
- Existing technologies provide limited disposal and treatment options for high-TDS waters.
- Therefore, there is a significant need to develop a low-cost, reliable approach to enable treatment for reuse of these high-TDS wastewaters.

Existing Treatment Technologies

- Reverse osmosis (RO), which uses hydraulic pressure to force pure water through a semipermeable membrane when the TDS is lower than 60,000 mg/L
- Chemical precipitation methods such as lime softening or ettringite precipitation will remove a large portion of divalent salts.
- Thermal processes (evaporation and crystallization) can potentially treat such high-TDS water with appropriate pretreatment and achieve the goal of producing potable water.

Solvent-Based Water Extraction

- Solvent-based extraction can potentially provide a moderate temperature (low energy), membranefree approach to treat high TDS brines
- The solvent-based water extraction system would eliminate or reduce many of the operational challenges that current technologies face during high TDS water treatment, since a water/solvent system would be simpler to operate, provide greater reliability, and reduce equipment costs.
- Reducing the energy requirement to absorb/release water in each cycle is necessary to move this technology toward the commercial scale.

Solvent Formulation	Rich Loading ¹	Lean Loading ²	Heat of Reaction ³	Specific Heat Capacity⁴	Density⁵	Rich Water Content ⁶	Lean Water Content ⁶
3-FPEA/OFP	0.36	0.08	67	1.49	1.38	8.5	2.25
2-FPEA/OFP	0.35	0.06	64.2	1.28	1.38	8.8	1.8
3-FNMBA/NFHp	0.41	0.09	68.7	1.42	1.28	6.8	2.7
4-FNMBA/NFHp	0.4	0.09	71.7	1.44	1.28	10.2	4.25

¹moles CO₂/mole amine @ 30C, ²moles CO₂/mole amine @80C, ³kJ/mole CO₂ @ 80C, ⁴J/kG*C, ⁵g/mL, ⁶wt%

Project Vision

CO2 Solvent System Advantages:

- Low capital cost:
 - Low material cost: the system does not require high pressures or temperatures
 - Simple structure: the process occurs in contacting vessels, not in reaction piping line or tower
 - Therefore, the capital cost of a prospective full-scale system will be low
- Low operating cost:
 - A simple pressure equilibrium changes can be used to trigger water uptake/release (the waterbonding mechanism is hydrogen bonding of water to the carbamate formed with CO_2).
 - The fully developed will use minimal to no thermal energy for water removal.
 - The water will require little to no pre-treatment before treatment.
- High quality effluent:
 - The process will also yield high-quality product water because the water absorption is based on hydrogen bonding of water molecules to the (carbonated and thus) protonated end of the NAS.
- Easy to scale-up:
 - Because this method is based on mixing two phases and is conducted in a large vessel, there will be no issue with scale-up

Solvent Extraction vs. Conventional Technologies

Characteristic	lon Exchange	Reverse Osmosis	Electrodialysis Reversal	Evaporation/ Crystallization	Water/Solvent Extraction
Energy cost	Low	Moderate	High	High	Low/moderate
Electricity usage vs. TDS	Low	Increase	High increase	Increase	Low
Plant/unit size	Modular	Modular	Modular	Large	Variable
Pretreatment requirement	Filtration	Extensive	Filtration	Chemical/pH	Minimal
Capital expenditure	Low	Medium	Medium	Very high	Low
Suitable for 180,000 mg/L TDS wastewater?	No	No	No	Yes	Yes

- No new technologies have been developed on the commercial scale within the last few decades to handle such high-TDS wastewater
- The increase in these waters generated from CO2 capture and extraction of fossil energy in the U.S. calls for development of a novel solution that requires low energy and low capital cost.

NAS Desalination Technology Process Flow

Prospective Process Scheme

Ideal Solvent Properties

- Environmentally safe:
 - In case there is any spill or human contact, the NAS should be reasonably safe.
- (T1) High water recovery:
 - NAS with the highest water uptake and complete discharge will be the ideal solvent.
- (T2) High salt rejection:
 - NAS with high salt rejection is necessary to significantly reduce TDS.
- (T3) Low residual solvent transfer to water phase after separation
 - Necessary for minimal post treatment polishing of final treated effluent.
- Small energy swing required for solubility variation:
 - The energy input required to swing between water absorption/desorption needs to be minimal
- Low vapor pressure (low volatility):
 - To minimize the replacement rate of the NAS and prevent atmospheric release of organics.
- Low degradation rate (low maintenance):
 - Chemicals with low replacement rate under repeated absorption-desorption will be studied and selected by minimizing degradation by temperature, chemical conditions, sunlight, or biological attack.

Solvent Properties and Impact on Process Performance

- Water yield is the ratio of purified water to unit weight of the solvent used in a single extraction step and is an important measure of the effectiveness of the water/solvent system
- The combination of the water yield and the time required to perform and complete the extraction step will determine the number of cycles that can be completed in a given time period and will affect the overall system design

Solvent Properties and Impact on Process Performance

- Water yields <2% will require that the tank volume be sized by more than a factor of 1.5 of the total volume to be treated
 - For example, if a site requires treating 1 million gallons of brine each day, even a solvent that extracts and releases water within 10 min would require a reactor volume of ~1.5 million gallons
- There is a clear point of diminishing returns, where increasing the water yield and/or reactor volume provides minimal improvements in process size

Test Solvent Groups by Water Adsorption/Desorption Mechanisms

1. CO₂-Switchable Solvents

- Purging of solvent with CO₂ for 30 min at 40 °C
- Mixing of CO_2 -laden solvent with aqueous NaCl solution (0.5 M or 3 M) (25 40 °C)
- Equilibration of CO₂-laden solvent/salt solution mixture to allow absorption of water from the salt solution into the solvent
- Purging of the water-bearing solvent with N₂ (80 °C) to desorb CO₂ and separate product water from the solvent phase

2. High-Temperature Water-Absorbing Solvents

- Absorbs water at a higher temperature (e.g., 80 °C) and releases (desorbs) water at a lower temperature (e.g., 20 °C or 40 °C) with our without CO₂
- 3. Low-Temperature Water-Absorbing Solvents
 - Absorbs water at a lower temperature (e.g., 20-25 °C) and releases water at a higher temperature (e.g., 80 °C)

Multi port gas purging/heating test kit

- Multi gas purging center
- Heating block can control the temperature of each solvent
- CO₂ purging for switchable solvent test
- N₂ purging to remove CO₂ in the solvent
- Other gas purging/heating process

Solvent-Based Water Extraction

Water + Solvent

After CO₂ purge (

CO₂ removal

Water layer formed

Temperature trigger

CO2 trigger

Water recovery and Salt rejection of each Group (preliminary)

- Group 2 solvents showed highest salt rejection (99%) but poor water recovery (2%)
- Group 1 solvents showed highest water recovery (30%) and poor salt removal performance (36%)

Group 3 solvent performance

- Some solvents from Group 3 showed high salt rejection (more than 90%) and decent water production (5 – 10 %)
- High salt rejection solvent (Solvent C) showed poor water recovery
- Solvent A showed high water recovery and high salt rejection but COD was high

Adding CO₂ to improve water recovery

- CO₂ saturated solvent A was added to the raw solvent A to increase water recovery
- CO₂ increased water recovery and water quality was more deteriorated (high salt and COD concentration in the produced water)

Adding polymer to improve water recovery

- Polymer was added to the *solvent A* to improve water recovery
- Polymer adding could reduce COD in the treated water but salt rejection lowered

Summary of Results

- Three mechanisms were developed for NAS desalination process
- Water recovery of a solvent can be as high as 30% but salt rejection was very poor
- □Salt rejection can be as high as 99% but water recovery was poor (2%)
- ■Some solvent can produce decent amount of water with low salt concentration but COD was high (more than 10,000 ppm)
- Adding CO2 or other polymer can improve water recovery but decrease salt rejection or increase COD in the water

Future plan for NAS Desalination project

□New solvent test

- From literature and solvent characteristics (pKa or LogP_{ow}), new solvents are being selected and tested
- Different group of solvents are also tested (Group 1 or Group 2)

Solvent mixtures

- CO2, Polymer, Alcohol and Fatty Acid are added to the solvent to increase desalination performance (water recovery, salt rejection and low COD in the water)
- Two more solvent are mixed together to improve the desalination performance

NAS desalination process development

- Iteration of solvent absorb/desorb process to increase water recovery
- Test in various temperature conditions for water absorption/desorption
- Post test to improve treated water quality

More Information

Young Chul Choi

Director of Water Technologies RTI International: Energy Technology Division Tel: 919.316.3885 Email: ycchoi@rti.org

