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Objective

Energy Sources
- Flare gas
- “Waste” heat

Solids Disposal
- RCRA-D
- NORM, industrial
- Incineration

Define Water 
Recovery
Process

Formation Water
- TDS (salinity)
- TSS (solids)
- Biological O2 demand
- Organics
- Hardness

Concentrate Disposal
- Underground injection control (UIC)
- Well-kill fluid
- Blendstock for hydrofracturing

Treatment Chemicals
- Local availability
- Cost

Product Off-takes
- Recovered water
- Salt
- Value-added minerals
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Strategy for Defining Water Recovery Process

1. Define Base Case
• Conventional desalination technology
• Assess required pretreatment needs
• Key question:  generate a solid NaCl product?

2. Compare Base Case & Alternate Desalination Technologies
• Softening required?

- Aspen Plus  and Excel models
- Cost of softening chemicals

• Techno-economic modeling of desalination processes
- Aspen Plus  and Excel models
- Cost results (normalized by base case cost)

3. Validation of Pilot-readiness
• Bench & pre-pilot scale experiments
• Model refinement
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Concentrate to reinjection:
295 g/L TDS
69.3 m3/hr

TSS Filtration
Sludge to RCRA-D disposal

(5.5 tonne/day 25 wt% solids)

Extracted Water Feed: 500 gpm (113.5 m3/hr)
180 g/L TDS

500 mg/L TSS

Pretreatment:
Deoiling
Filtration

Softening (optional)
Dissolved organics removal

Brine Concentrator NaCl Crystallizer

NaCl(s): 460 tonne/day
Purge:  3.9 m3/hr

NaCl Crystallizer

Brine Concentrator

Option 1 Option 2B

44.6 m3/hr
distillate

Option 2A

95.8 m3/hr
distillate

95.8 m3/hr
distillate

Base Case Definition
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Produced Water Treatment Facility
On-site pilot-scale proving grounds for separation materials & unit operations R&D

Steam Regenerable Sorbent (SRS) Unit: ≤ 2 kg resin, ≥ 0.5 LPM, “field” flow profile, ≤ 235 psig steam (≤ 200 °C)

Controls
Feed: Tank + 

Controls Resin Column Backwash/Steam 
Controls

Steam Generator

Microfiltration Unit: 2 GPM permeate with < 10 NTU, auto-
backwash, flowrates can be scaled up/down

Ultrafiltration Unit:  ≤ 5 GPM permeate for removing fines, oily 
colloids; can be converted to NF/RO

• Comprehensive analytics on-site & off-site: LC-OCND, TDS, TSS, TOC, cond., 
BTEX/GRO/DRO
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Microfiltration (MF)
• Validation with Williston Formation produced water diluted to 180 g/L TDS
• Pre-pilot performance of commercial-scale MF element for produced water 

filtration
– Good recovery of distilled water flux after filtration cycles suggests efficient backwashing and 

long times between element replacements
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Microclarification (MC)
• Validation with Eagle-Ford Formation produced water
• Pre-pilot performance of prototype MC unit for produced water solids removal
– Rapid and effective bulk separation achieved with ~ 1/40 the residence time of a clarifier
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Steam-Regenerable Sorption (SRS)
• Validation with various produced waters up to 180 g/L TDS
• Pre-pilot performance of SRS resin bed for removal of organics from produced 

water
– GE’s R&D resin and a commercial resin both show high sorption capacity & kinetics, rapid 

steam regenerations and  good recovery of properties after steam regenerations

Regeneration Condensate 
(~ 160 °C steam, ~ 1.5 GPH 

condensate):  
all organics removed in 30 min
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Concentrate to reinjection:
295 g/L TDS
69.3 m3/hr

TSS Filtration
Sludge to RCRA-D disposal

(5.5 tonne/day 25 wt% solids)

Extracted Water Feed: 500 gpm (113.5 m3/hr)
180 g/L TDS
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Pretreatment:
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distillate

95.8 m3/hr
distillate

Base Case Definition
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Option 1 lowest cost for UIC < $0.40/bbl…select for base case

Cost model details
- Feed:  113.5 m3/hr, 180 gm/L 

TDS, $0.40/bbl reinjection cost
- Installed CAPEX
- Electricity for compressor
- Concentrate or purge disposal
- Pretreatment ($0.25/bbl), no 

softening
- No credit for distilled water, salt
- Out-of-scope:  effect of 

parasitic load on process 
economics

Base Case Desalination Options Comparison
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Schematic of FF-MVR desalination system courtesy of GE Water.

Base Brine Concentrator:  Falling Film 
Mechanical Vapor Recompression (FF-MVR)
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Alternate Brine Concentration Technologies
Suitable for high TDS (180 g/L) extracted water:
1. Forward Osmosis (FO)
2. Membrane Distillation (MD)
3. Humidification-Dehumidification (HDH)
4. Clathrate Chemical Complexation
5. Turbo-Expander-based Freezing

Marginally-suitable technologies:
1. High Pressure Reverse Osmosis

- Not feasible > 70 g/L TDS
2. Electrodialysis

- High energy consumption at high TDS; questionable feasibility with hard waters

Feed Mg++ lb-mole/hr 14.704
Feed Ca++ + Sr++ lb-mole/hr 63.838
Na2SO4 added as 100% (optional) lb/hr 4.85
NaOH added (100%) lb/hr 1175.0
Na2CO3 added (100%) lb/hr 7203.0
HCl for neutralization (100%) lb/hr 105.4
Sludge generated (25 wt% solids) short ton/hr 14.82

Na2SO4 cost $/hr $0.325
NaOH cost $/hr $325.1
Na2CO3 cost $/hr $1149
HCl cost $/hr $25.10
Sludge disposal $/hr $741.1
Total softening cost $/hr $2240
Net distillate m3/hr 44.58
Softening cost $/m3 net distillate $50.25

High cost of softening 
hard waters (e.g. 

Williston Formation) 
limits alternate 

desalination options

Softening Chemistry
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Forward Osmosis Desalination
• Draw solution creates osmotic pressure gradient across membrane
• Water permeates from feed brine to draw solution
• Draw solution and fresh water recovered thermally
• Less fouling than RO due to low pressure requirement

Schematic of FO Desalination System (McGovern & Lienhard, 2014)

With heat integration:  0.58X the cost of base case falling-film MVR
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Membrane Distillation Desalination

• Hydrophobic, microporous 
membrane

• Water vapor partial 
pressure difference drives 
water flux across the 
membrane

• Low grade heat can be 
used

• Organics removal important

Membrane Distillation Schematic (Yarlagadda, Camacho, Gude, & Wei, 2009)

With heat integration:  0.85X the cost of base case falling-film 
MVR
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Humidification-Dehumidification (HDH) Desalination

• Hot carrier gas contacts feed in a high mass transfer rate humidifier
• Distilled water recovered in a dehumidification chamber
• Potential to use CO2-rich flue gas
• Without heat integration, HDH far more costly than base case

With heat integration:  0.22X the cost of base case falling-film 
MVR
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Clathrate-based Desalination

• Feed is chilled in presence of 
dispersed low density guest 
molecule 

• Water complexes & freezes 
around guest molecule to 
form clathrate which then 
floats for facile separation

• Thermal regeneration of 
clathrate and recovery of 
distilled water

• Established process costs 
~ 1.75X base case

With improved guest dispersion:  0.52X the cost of base case falling film 
MVR

Schematic Diagram of Clathrate-based Dehydration Process (Bradshaw et al, 2008)
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Turbo-Expander Based Desalination Process

Favorable economics:  0.78X the cost of base case falling-film MVR

• Water is frozen when injected into a cold stream of vapor/liquid propane
• Energy recovered by using propane to melt ice
• Technical risks:  freezing brine (addressed); ice/salt separation (in 

progress)
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Desalination Cost Summary

Future work: refinement of pretreatment & desalination cost models 
via bench/pre-pilot scale runs with field-sourced extracted water

= 4.8
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