Testing and Demonstrating a Stigmergic Control Strategy

Dr. Paolo Pezzini Dr.Peter Finzell Dr. Mark Bryden

Simulation, Modeling, & Decision Science

Increasing energy use Increasing impact on the environment Increasing resource scarcity

Hybrid systems

- High efficiency
- Low emissions

Innovative control solutions

- Coupling between energy devices
- Different time scale
- Increase turn down flexibility
- Adaptability, scalability and reconfigurability

Advanced hybrid systems

Hyper configuration

- 1. Multivariable control strategy
- 2. Multi-agents control solutions (Stigmergic)

Development and validation of control algorithms

Developing a Multivariable Control Schema

Fuel valve perturbation (4%):

- 4% = 200 kWth
- 200 kWth = 35 kWel in the fuel cell
- 35 kWel = 10% load turn down

Deviation at nominal conditions

- Turbine speed = 300 rpm
- Cathode airflow = 0.03 kg/s

Multivariable Results – Disturbance Rejection

Turbine Speed Perturbation

- 500 rpm
- 1.2% of the full range operation

Deviation at nominal conditions

- Overshooting = 200 rpm (40%)
- Cathode airflow = 0.05 kg/s

Maximum rate of change

- Electric load = 18.75 kW (80 ms)
- Cold-air bypass = 1.79% (80 ms)

Multivariable Results – Set-point Tracking

Cathode airflow Perturbation

- 0.2 kg/s
- 20% of the full range operation
- 1,000 rpm of coupling rejected

Maximum rate of change

- Electric load = 6.25 kW (80 ms)
- Cold-air bypass = 6.21% (80 ms)

Multivariable Results – Set-point Tracking

Construction behavior from social insects

Insects accomplish tasks without centralized authority

Modifications to the environment are used to communicate and coordinate actions

Distributed construction - Stigmergic

Computational agents represent insects

Agents imitates the construction behavior of social insects

Each agent takes independent decisions

Stigmergic

Flexibility Block Repository Adaptability Overcome changes in the environment

Grouping sensors and actuators in computational agents

Agent 1

Agent N

Shared Resource (Blocks)

- Establishes cooperation and sharing
- Blocks are a discrete unit of change to an actuator

Random Number Generation

- Emergent behavior found in social insects
- An agent is selected randomly

Probability of action

- Determines frequency of action taken

Resource sharing algorithm

Stigmergic Control Schema

Stigmergic Results – Agent 1 Block Size

Stigmergic Results – Agent 1 Probability of Action

Stigmergic Results – Agent 2 Block Size

Stigmergic Results – Agent 2 Probability of Action

g Parameter Results

Stigmergic response

Multivariable and Stigmergic Comparison

Multivariable and Stigmergic Comparison

Stigmergic Control Schema

- No modeling of the system is required
- Much simpler tuning
- In most cases the response is comparable to multivariable strategies

Multivariable Control Strategy

- Modeling and tuning of the system is a critical task
- In some cases provides a faster response
- Better disturbance rejection

Current Work

Algorithm Development				Adaptability				
		Physical	System			Multip	le-sensors	
Created a resource sharing algorithm from the behavior of social insects		Established that the algorithm can be applied to a physical system		Co-workers add redund provides ro and reconf	Co-workers agents add redundancy that provides robustness and reconfigurability		A control decision will be made on overlap, duplication, and reuse of sensors	

Future work

MESA Team in Ames

Dan Bell (PhD grad, Iowa State U)

Zach Reinhard (PhD grad, Iowa State U)

Hyper Team in NETL

Dr. David Tucker

Dr. Farida Nor Harun

Valentina Zaccaria (PhD grad, U of Genoa)

Acknowledgements