Evolving Robust and Reconfigurable Multi-Objective Controllers for Advanced Power Systems

PI: Kagan Tumer

Oregon State University

kagan.tumer@oregonstate.edu

NETL Project Manager: Sydni Credle

DE-FE0012302

April 20, 2016

Oregon State

Motivation: Energy Systems

- Where are we?
 - Advanced energy systems becoming more interconnected
 - Computation pushed further down the pipe
 - More powerful, cheaper, smaller devices

- Where are we going?
 - Hybrid systems
 - Competing objectives
 - Smart sensors, actuators

Oregon State

Motivation: Energy Systems

- Where are we?
 - Difficult to model
 - Distributed decision making
 - Need Scaling

- Where are we going?
 - Even more difficult to model
 - Even more distributed decision making
 - Even more scaling

Oregon State

Motivation: Energy Systems

- We need to account for?
 - Model inaccuracies (or lack of models)
 - Thousands of actors (sensors, controllers, users)
 - Failing components
 - Competing objectives
 - Dynamic and stochastic environments

- And still control systems to result in safe, efficient operation

Outline

- Motivation: multiagent, multi-objective control in complex systems
- Roadmap & objectives
- Key Milestones for last year
 - M 1: Develop abstract simulator
 - M 4: Develop multi-objective controller

• Summary & Project Status

Oregon State

Project Milestones

Milestone Number	Milestone Title	Planned Completion Date	Actual Completion Date
1	Develop an abstract simulator for advanced power systems	June 2014	June 2014 🗸 Ongoing
2	Develop bio-mimetic control algorithm for advanced power systems	Sept. 2014	Sept. 2014 🗸
3	Develop system metrics to measure tradeoffs of plant objectives	March 2015	March 2015 🗸
4	Develop multi-objective control algorithm for advanced power systems	Sept. 2015	Sept. 2015 🗸
5	Develop robust controller for advanced power system	June 2016	September 2016
6	Develop reconfigurable, multi-objective controller for advanced power system	Sept. 2016	September 2017

Oregon State

Project Milestones

Milestone Number	Milestone Title	Planned Completion Date	Actual Completion Date
1	Develop an abstract simulator for advanced power systems	June 2014	June 2014 🗸 Ongoing
2	Develop bio-mimetic control algorithm for advanced power systems	Sept. 2014	Sept. 2014 🗸
3	Develop system metrics to measure tradeoffs of plant objectives	March 2015	March 2015 🗸
4	Develop multi-objective control algorithm for advanced power systems	Sept. 2015	Sept. 2015 🗸
5	Develop robust controller for advanced power system	June 2016	September 2016
6	Develop reconfigurable, multi-objective controller for advanced power system	Sept. 2016	September 2017

Oregon State

Outline

- Motivation: multiagent, multi-objective control in complex systems
- Roadmap & objectives
- Key Milestones
 - M 1: Develop abstract simulator
 - M 4: Develop multi-objective controller

• Summary & Project Status

Oregon State

Milestone 1: Abstract Simulator

- Use data from real HyPer runs to train abstract simulator
 - Neural network maps current plant state and control actions to next plant state
 - Can use neural network to make a time domain simulator of the plant
- Are we claiming you can replace high-fidelity simulator ???
 ABSOLUTELY NOT

Claim: You can approximate high-fidelity simulator in parts of state space to develop policies.

You can then tune policies on high-fidelity simulator and test in hardware

Oregon State

Training 1.0

- We have labeled data
- Backpropagation!

• What can possibly go wrong???

Results: Backpropagation (BP)

Oregon State

Results: Backpropagation 1-time step

Oregon State

What is going on?

- Backpropagation inadequate
 - 1-time step training is good
 - Error propagates through time

• Solution: Evolutionary Algorithm with "bigger picture" view

Training 2.0

- Backpropagation inadequate
 - 1-time step training is good
 - Error propagates through time

- Solution: Evolutionary Algorithms
 - Key: Fitness metric

Weakness based search

$$w = \frac{1}{t_o} \sum_{i=1}^{k} \left(\sum_{i=1}^{t_o} |t_i - y_i| \right)^2$$

- Weakness metric (anti-fitness)
- 25,000 generations
- Population size: 100

Oregon State

Weakness based search

$$w = \frac{1}{t_o} \sum_{i=1}^{k} \left(\sum_{t=1}^{t_o} |t_i - y_i| \right)^2$$

• Error at each point

Weakness based search
$$w = rac{1}{t_o} \sum_{i}^k \Big(\sum_{t=1}^{t_o} |t_i - y_i|\Big)^2$$

• Total time steps

Oregon State

Weakness based search

$$w = \frac{1}{t_o} \sum_{i}^{k} \left(\sum_{t=1}^{t_o} |t_i - y_i| \right)^2$$

• Aggregate L1 norm of error for each sensor

Weakness based search

- L2 norm of time aggregate error distribution
- Error distribution is important

Results: Weakness-based neuro-evolution

Oregon State

What happened?

• Improved performance tremendously

• But: Solutions are sensitive to starting point

Training 3.0

- Use Novelty
 - Use sparcity of error vector
 - Average k-neighbor distance

So ...

Oregon State

Results: Adding Novelty-based Neuro-evolution

Oregon State

Results: Error histograms

Outline

- Motivation: multiagent, multi-objective control in complex systems
- Roadmap & objectives
- Key Milestones
 - M 1: Develop abstract simulator
 - M 4: Develop multi-objective controller

• Summary & Project Status

Oregon State

Key Issue in many Real World Problems

• You have one than one objective

• How do you trade-off one for the other

Key Issue in many Real World Problems

Key Points

- "Seeing" the performance is easy with two objectives
- With higher than three objectives, it is very difficult
- Linear combination misses entire areas of search space
 - Suboptimal
 - Poor trade-offs
- Population based searches are slow. Very, very slow

PaCcET Result

Multi-Objective Control

- Sample control policies
 - Maximize fuel cell inlet temperature accuracy
 - Maximize turbine speed tracking accuracy

Empirical Attainment Function

Oregon State

Endpoint Profile Locations

Oregon State

Endpoint Profiles

Tradeoff Profile Locations

Oregon State

Tradeoff Profiles

Oregon State

What do Results mean?

- Orange policy:
 - moderate match of the desired turbine profile and target fuel cell temperature
 - It does not optimize either objective of the plant, it does well at finding a middle ground between the policies which only consider one plant objective

- These are not tradeoffs that are obvious with linear combination

Project Milestones

Milestone Number	Milestone Title	Planned Completion Date	Actual Completion Date
1	Develop an abstract simulator for advanced power systems	June 2014	June 2014 🗸 Ongoing
2	Develop bio-mimetic control algorithm for advanced power systems	Sept. 2014	Sept. 2014 🗸
3	Develop system metrics to measure tradeoffs of plant objectives	March 2015	March 2015 🗸
4	Develop multi-objective control algorithm for advanced power systems	Sept. 2015	Sept. 2015 🗸
5	Develop robust controller for advanced power system	June 2016	September 2016
6	Develop reconfigurable, multi-objective controller for advanced power system	Sept. 2016	September 2017

Oregon State

Publications

1. Neuroevolution of a Hybrid Power Plant Simulator.

S. Khadka, K. Tumer, M. Colby, D. Tucker, P. Pezzini, K.M. Bryden. In Proceedings of Genetic and Evolutionary Computation Conference (GECCO) 2016, Denver, CO. July 2016.

1. Multi-objective Neuro-evolutionary Control for a Fuel Cell Turbine Hybrid Energy System.

M. Colby, L Yliniemi, P. Pezzini, D. Tucker, K.M. Bryden, K. Tumer. In Proceedings of Genetic and Evolutionary Computation Conference (GECCO) 2016, Denver, CO. July 2016.

Acknowledgements:

- Department of Energy, NETL
- Sydni Credle, Project Manager
- Steve Seachman, Past Project Manager

• Students: Shaw Khadka, Drew Wilson, Logan Yliniemi, Drew Gabler

Phd, 2014

Phd, 2015

MS, 2015

Oregon State

- Postdoc: Mitchell Colby ~
- Dave Tucker, NETL
- Paolo Pezzini, Kenneth Mark Bryden, Ames laboratory

Contact Info:

Kagan Tumer

Oregon State University

kagan.tumer@oregonstate.edu

engr.oregonstate.edu/~ktumer/

Oregon State