Distributed Wireless Antenna Sensors for Boiler Condition Monitoring

<u>Haiying Huang</u>, Franck Mbanya Tchafa, Jun Yao, Ankur Jain Jiuyuan Nie, Jian Luo

Award #: DE-FE0023118 Duration: 1/1/2015-12/31/2017 Organization: University of Texas Arlington & UCSD

Outline

Technical background/motivation

Progresses

- Wireless interrogation of antenna sensor without electronics
- Sensor fabrication from high temperature materials
- Dielectric property characterization
- Efficient antenna simulation model
- Future work

Objectives & Overview

Realize distributed conditioning monitoring of steam pipes up to 1000 °C

- Wireless interrogation of flexible antenna sensor arrays
- Study material development, sensor design, and multivariant analysis
- Monitor temperature and strain distribution of steam pipes
- Detect soot accumulation on steam pipes

Microstrip Patch Antenna

f = antenna resonant frequency c = speed of light \mathcal{E}_r = substrate dielectric constant L = patch dimension along current direction

Strain: change dimensions of radiation patch $\delta L/L$ **Soot accumulation**: change effective dielectric constant $\delta \varepsilon_{eff}/\varepsilon_{eff}$ **Temperature**: changes both $\delta \varepsilon_{eff}/\varepsilon_{eff}$ and $\delta L/L$

Achievement #1: Wireless Interrogation of Antenna Sensor Without Electronics

Wireless Interrogation of Antenna Sensor

- **T**x/Rx antenna
 - Receive interrogation signal over broad bandwidth
 - Transmit antenna backscattering
- Transmission line
 - Delay antenna backscattering
- Antenna sensor
 - Encode temperature info in antenna backscattering

TEXAS ARLINGTON

Antenna Backscattering Spectrum

Antenna Sensor Design

- Commercial high frequency circuit laminate (Rogers RO3210)
 - □ Temperature: up to 300 °C
 - Dielectric constant: 10.2
 - Thermal coefficient of dielectric constant (TCDk): -459 ppm/°C
 - Coefficient of Thermal Expansion: 13 ppm/°C
- Antenna sensor parameters
 - Operating frequency: 2.4 GHz
 - □ Size: 23.8 X17.4 mm²
 - **Transmission line: 200 mm long**

Broadband Tx/Rx Antenna

- Radiation patch: conventional design
- Ground plane: Reactive impedance surface (RIS) metamaterial
 - Increase bandwidth
 - Enhance radiation gain

Tx/Rx Antenna Characterization

Data acquisition

- Bandwidth: ~ 4 GHz
- Gain: 1-4 dBi @ 2.4-3.6 GHz

UC San Diego

Wireless Interrogation of Antenna Sensor

Tx/Rx Antenna

Thermocouple

- Interrogation power: 10 dBm
- Interrogation distance: 0.7 m
- Temperature range: 20-300°C

11

UC San Diego

Digital Signal Processing

Test Results - Wireless Interrogation

- Excellent linearity: $R^2 = 0.996$
- Temperature sensitivity: 332.8 kHz/°C

Instrument used is expensive, slow, & bulky

FMCW-based Wireless Interrogator

FMCW-based Wireless Interrogation

Achievement #2: Sensor Fabrication for Temperature up to 1000°C

Material Selection

Electrode materials

- Stable up to 1000°C
- High electrical conductivity

Metals	Electrical Conductivity 10 ⁶ S/m	Melting point °C	High Temp. Stability in air
Copper	58.5	1085	Poor
Gold	44.2	1064	Good
Aluminum	36.9	660	Poor
Zinc	16.6	420	Poor
Nickel	14.3	1455	Poor
Platinum	9.3	1768	Good

Substrate material

- □ Stable up to 1000°C
- Temperature-depend dielectric constant
- Low tangent loss

Alumina Wafer

Alumina Paste

Alumina Paper

Sensor Fabrication

- Tape casting using platinum paste
 - Well established for fabricating layered structures
- Adhesive masks for precise control of radiation patch pattern
- Improve conductivity
 - Vacuum-assisted drying for reducing pores
 - Multilayer pasting to achieve thicker electrodes

UC San Diego

Sheet Resistance Characterization

Jandel Four point probe with RM3000 Test Unit

Average Sheet Resistance of Pasted Electrode at Various Location

	Sample	Front Patch mΩ/Square	Transmission Line mΩ/Square	Back Electrode mΩ/Square	
	Antenna Sensor	8.2	31.0	23.1	
	Tx/Rx Antenna	3.5	8.6	6.4	<u> </u>
UNIVERSITY OF TEXAS ARLINGTON		UC San Die			

Test of Antenna Sensor on Alumina Wafer

- Tx/Rx antenna fabricated on Rogers substrate
- Antenna sensor fabricated from platinum paste and alumina wafer
- TxRx and antenna ensor connected using SMA connector
- Tested at temperature up to 100 °C
- Interrogation distance of 0.7 m
- Sensitivity of -53.49 kHz/°C

Flexible Dielectric Substrates

Investigated alternative sensor materials

- Reduce cost
- Achieve flexible substrates

Materials considered

- Nickel-copper alloy as electrodes
- Ceramic paper and adhesives as substrates
 - Ceramabond 571
 - Ceramabond 671

Preliminary results

- Oxidation of electrodes during annealing at 100°C
- Poor performance due to inhomogeneity of paste
- Difficulties in controlling paste viscosity
- Substrate thickness is very thin after drying
- Substrate is brittle and easily peals off

Achievement #3: Established Procedures for Material Property Characterization

Dielectric Property Characterization

Achievement #4: Established Efficient Simulation Model for Simultaneous Temperature/Strain Sensing

Efficient Antenna Simulation Model

- Simulation model is needed for
 - Parametric studies
 - Multi-variant analysis
- Cavity model (CM)
 - Efficient model for analysis of the patch antenna
 - More accurate that the transmission line model
 - Good physical insight but complex in nature
- Comparison of CM simulation to commercial electromagnetic simulation tool (Sonnet) gives 0.2 % difference at resonant peaks

UC San Diego

Summary

- Demonstrated two wireless interrogation techniques for antenna sensors without electronics
- Explore techniques to fabricate antenna sensor from high temperature materials
- Established theoretical foundation for
 - Dielectric property characterization
 - Multivariate analysis of antenna sensors
- Publications
 - One journal manuscript under preparation (90%)
 - □ One conference accepted (SMASIS 2016)

Future Work

- Simultaneous measurement of strain and temperature using a patch antenna sensor
- Wireless interrogation of antenna array
- Finalize fabrication of sensors using Alumina wafer/Platinum
- Explore flexible & inexpensive high temperature materials

Question & Answers 28 UNIVERSITY OF

