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« Sensors and instrumentation are needed in advanced
energy systems for
— Advanced process control/optimization
— Health status monitoring of key components
— System maintenance and lifecycle management

« Sensors need to survive and operate in the high-T,
high-P and corrosive/erosive harsh environments for
along time
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« Traditionally, sensors are attached to or installed
onto the component after the structure is fabricated

« Costly and complicated sensor packaging are
required before installation

 Poor survivability and reliability of the sensors

* Discrepancy between the sensor reading and the
actual status

« Potential performance compromise of the host
materials/structures
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« Smart parts —widely used and proven successful in
civil engineering for structural health monitoring
(SHM)

 Provide the real-time information of the component
and system

 Reduce the complexity in sensor packaging and
Installation

* Increase the robustness and reliability of the system
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« Main Objective: Demonstrate the new concept of sensor-
Integrated “smart part” achieved by additive manufacturing
and embedding microwave-photonic sensors into critical
components used in advanced energy systems

« Specific objectives
— Robust, distributed and embeddable microwave photonic sensors

— Additive manufacturing techniques for rapid fabrication of “smart
parts” and sensors embedment

— Multifunctional transition layer between the embedded sensor and
host material for sensor protection and performance enhancement

— Models to correlate the sensor readings with the parameters of
iInterest

— Sensor instrumentation for in situ and distributed measurement
— Feasibility tests and performance evaluation
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* Performers: Missouri S&T, Clemson, University of Cincinnati
— Three-year project started on Oct. 1, 2013

e Interdisciplinary team

— Hai-Lung Tsai (PI), Professor of Mechanical Engineering, Missouri S&T,
Modeling and AM of metal parts

— Ming Leu, Professor of Mechanical Engineering, Missouri S&T, AM of
ceramic parts

— Hai Xiao, Professor of Electrical Engineering, Clemson University, Sensors
and Instrumentation, test and evaluation

— Junhang Dong, Professor of Chemical Engineering, University of Cincinnati,
Sensor protections

e Success criteria:
— Demonstrate concept and capability in simulated laboratory environments
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Development of robust, distributed
and embeddable sensors and
instrumentation

Approach: Fully distributed microwave photonic fused silica
and sapphire fiber sensors

Hai Xiao
Clemson University
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e Optical carrier based microwave interferometry
(OCMI)
— Read optical interferometers using microwave
— Optics as the carrier to perform measurement
— Microwave as the signal to locate the sensors

Microwave term
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J. Huang, et al., Optics Express, 2014.
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e Michelson interferometer using multimode fibers
(fused silica core of 200um in diameter, 220um
cladding)

e Excellent fringe visibility

e No observable multimodal influences
Page 11 L. Hua., Applied Optics, 2015
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e High sensitivity for strain sensing (~10ue) at 600°C
e Small temperature cross sensitivity

Page 12 L. Hua., Applied Optics, 2015
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Develop a multifunctional transition
layer between the embedded sensor
and the host material for sensor
protection

Approach: Design and select ceramic and metal materials based

on structural and chemical potteries

Refractory block B

(Porous) ceramic adhesion

Dense metal layer R ot L R

Junhang Dong, Sapphire fiber/rod
- - - = - Dense cladding
University of Cincinnati
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Solid-Solid Connections: MgAl,O,/
Silicalite/Stainless-steel three-layer
structure

Interface Stability: Stable at 750°C; stability

at higher temperature is yet to be tested
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Structure: (Zirconia)/(a-alumina)/(silica optical fiber)
Fabrication: inserting optical fiber into zirconia small tube by alumina adhesives

Stability: Fiber strongly attached to structure after thermal cycles; tested stability at
750°C

Zirconia

tube |

{Optical Fibé

i

Optical
fiber
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« Thestructuresof silicalite-coated-sapphireisstable after firing at 1000°C for
200 h according to SEM and EDS examinations— No structural damage or
elemental diffusion acrossthe Silicalite/Sapphire interface was found.

Polycrystallin
e silicalite

Sapphire
chip
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Multilayer Protection

The structures of silicalite-coated-sapphire
with an overcoats of ZAIMg (ZrO,-Al,O;-
MgO mixture) and ADZ (Zr,_, 75, Al S10,) are
both stable after firing at 1000°C for 200 h
according to SEM and EDS examinations —
No structural damage or inter-layer element
diffusion was found.
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Additive Manufacturing of Liner
Blocks (Ceramic) with Embedded
Sensors

Approach: Multi-extruder freeze-form extrusion based
additive manufacturing

Ming Leu
Missouri University of Science and Technology
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Novel AM Process

MISSOURI

Sl

o Alayer is deposited through a moving nozzle.

o 0Oil is pumped to surround the layer.

o Infrared lamp is used to partially dry the layer.

o Next layer is deposited.
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Tool-path Planning Software

o An algorithm has been developed and coded into
computer software to
o Read the geometry of the part in STL format.
o Slice the part.
o Generate tool-path for each layer.

o Generate a G&M code for output to a manufacturing
machine for part fabrication by 3D printing.

23
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e
Example Printed Parts




MISSOURI

MissouRrl UNIVERSITY OF SCIENCE AND TECHNOLOGY S T

Mechanical Properties Measured

o Relative density (Archimedes’): 98%

o Flexural strength (ASTM C1161 four-point bend):
364150 MPa

o Young’'s modulus: 390 =21 GPa

o Fracture toughness (ASTM C1412 chevron-
notched beam, configuration A): 4.5=+0.1
MPa.mO0.5

o Hardness (ASTM C1327 Vickers indentation test):
19.8 0.6 GPa

25
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o
Microstructure Evaluation
o Microstructure was observed under SEM

o Grains are highly packed

o Average grain size
based on lineal
intercept: 2.1 um

__*_ o . i ~.#‘\ L '!. e .
mode| HV | cur | WD |det mag &
SE |500kV 017 nA 127 mm ETD| 3500 x
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Fiber Embedment

o Sapphire fibers of 75, 125 and 250 um diameter
were successfully embedded in the aluminum parts

o A signal was passed through the fibers to ensure that
the embedded fibers are not damaged
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I
Fiber Embedment

o Micrographs of the embedded fibers show good
mechanical bonding between fiber and part

Sapphire fiber




Additive Manufacturing of Pipe
(Metal) with Embedded Sensors

Approach: Foil-Based Dual-Laser Additive Manufacturing
Technology

Hai-Lung Tsai
Missouri University of Science and Technology
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Foil-Based AM System Setup

* System Design, Hardware and Software Implementations, and Integration.

Motion stage

control Foil roller

MISSOURI
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As-Fabricated Samples

LASER-BASED MANUFACTURING LABORATORY
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Laser Welding

(a) Surface
morphology of the
raster-scan weld;

(b) Cross-section of a
single-line laser
foil-welding onto a
substrate;

(¢) Cross-section of
the raster-scan
weld of one-layer
foil onto a
substrate;

(d) Cross-section of a
multi-layer raster-
scan weld

Sckne & ooy LASER-BASED MANUFACTURING LABORATORY



Laser Surface Polishing - Modeling

Simulation of the thermal and melt flow processes of laser polishing for a hemispherical

bump on a flat substrate.
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Laser Surface Polishing - Experiment

The surface roughness can be significantly reduced from about 20 um to
less than 3 um

Cross-section line
1

Initial Polished
surface surface

Initial surface

Polished surface

Top surface of laser polishing Cross-section of laser polishing

LASER-BASED MANUFACTURING LABORATORY
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Sensor-Embedded Parts Fabrication

Curved sensors to be embedded

3D models for sensor embedding. . o~
in the printing process.

Sensors are embedded in the parts.
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Thermal Stress-Strain Modeling of
Embedded Sensors
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Fiber cladding Fs laser ablated region

Fslaser beam

Objective lens
(20X Water
immersion)

Fiber holder M‘later tank

I Halogen light

e The polarization status can be flexibly changed by fs laser induced
stress patterns inside the fiber

e Waveplates of any desired phase retardance can be fabricated in a SMF
L. Yuan, et al., Optics Express, 2016.
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O Microwave photonic sensors and instrumentation
have been developed and proven effective

d Protective coating materials have been identified
and successfully coated on silica and sapphire

d Additive Manufacturing techniques have been
developed for fabrication of smart parts

O Multi-extruder freeze-form extrusion for ceramic parts
O Foil-Based Dual-Laser Additive Manufacturing for metals

0 Information integrative smart manufacturing system

 Models have been developed to study the induced
stress/strain on the sensor caused by external
_high pressures or high temperatures
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e Continue optimization and improvement on

— Sensors: stability, loss sensitivity, temperature cross sensitivity,
protection, embedment

— Additive manufacturing techniques and processes

e Ceramic: sintering, new materials, functionally gradient, mechanical tests
e Metal: surface improvement, 3D metal parts

— Modeling: temperature and pressure coupled models
— Protective coating: multilayer structure and coating on real sensors

e Test embedded sensors in smart parts

 Making sensors while making the parts

e Initial tests of sensors embedded in the smart parts
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