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Demands

• Sensors and instrumentation are needed in advanced 
energy systems for 
– Advanced process control/optimization
– Health status monitoring of key components
– System maintenance and lifecycle management

• Sensors need to survive and operate in the high-T, 
high-P and corrosive/erosive harsh environments for 
a long time



Status

• Traditionally, sensors are attached to or installed 
onto the component after the structure is fabricated

• Costly and complicated sensor packaging are 
required before installation

• Poor survivability and reliability of the sensors

• Discrepancy between the sensor reading and the 
actual status

• Potential performance compromise of the host 
materials/structures 



Opportunities

• Smart parts – widely used and proven successful in 
civil engineering for structural health monitoring 
(SHM) 

• Provide the real-time information of the component 
and system

• Reduce the complexity in sensor packaging and 
installation 

• Increase the robustness and reliability of the system



Objectives
• Main Objective: Demonstrate the new concept of sensor-

integrated “smart part” achieved by additive manufacturing 
and embedding microwave-photonic sensors into critical 
components used in advanced energy systems

• Specific objectives
– Robust, distributed and embeddable microwave photonic sensors 
– Additive manufacturing techniques for rapid fabrication of “smart 

parts” and sensors embedment
– Multifunctional transition layer between the embedded sensor and 

host material for sensor protection and performance enhancement
– Models to correlate the sensor readings with the parameters of 

interest
– Sensor instrumentation for in situ and distributed measurement
– Feasibility tests and performance evaluation



Project Elements/Overview

• Performers: Missouri S&T, Clemson, University of Cincinnati
– Three-year project started on Oct. 1, 2013

• Interdisciplinary team 
– Hai-Lung Tsai (PI), Professor of Mechanical Engineering, Missouri S&T, 

Modeling and AM of metal parts
– Ming Leu, Professor of Mechanical Engineering, Missouri S&T, AM of 

ceramic parts
– Hai Xiao, Professor of Electrical Engineering, Clemson University, Sensors 

and Instrumentation, test and evaluation
– Junhang Dong, Professor of Chemical Engineering, University of Cincinnati, 

Sensor protections

• Success criteria: 
– Demonstrate concept and capability in simulated laboratory environments 



Development of robust, distributed 
and embeddable sensors and 

instrumentation
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Approach: Fully distributed microwave photonic fused silica 
and sapphire fiber sensors

Hai Xiao
Clemson University



Microwave-Photonics Sensors

• Optical carrier based microwave interferometry 
(OCMI)
– Read optical interferometers using microwave
– Optics as the carrier to perform measurement
– Microwave as the signal to locate the sensors
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OCMI Concept
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MMF: Low Multimodal Influences
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• Michelson interferometer using multimode fibers 
(fused silica core of 200µm in diameter, 220µm 
cladding)

• Excellent fringe visibility
• No observable multimodal influences

L. Hua., Applied Optics, 2015



Strain at 600ºC, 200µm Fiber
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• High sensitivity for strain sensing (∼10με) at 600ºC
• Small temperature cross sensitivity

L. Hua., Applied Optics, 2015



Quartz rod (800μm dia. Uncladded)

Fused silica rod 800μm dia.

High temperature response
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Quartz rod can be used to measure 
strains at high temperaturesL. Hua., Applied Optics, 2015



Sapphire Michelson Sensor (125 µm)
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J. Huang, et al., IEEE Photonics Technology Letters, 2015.
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Fully distributed sensing 

• Spatially continuous (no dark 
zone), fully distributed 
sensing.

• High spatial resolution (<1cm)

• High sensitivity (∼με)

• Flexible gauge length (1cm –
100m)

• Long reaching distance (∼km)

• Can be implemented using 
various fibers including 
sapphire and quartz rods
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Develop a multifunctional transition 
layer between the embedded sensor 

and the host material for sensor 
protection

Sapphire fiber/rod
Dense cladding
Sintered porous layer of 
cladding material

Dense metal layer
(Porous) ceramic adhesion

Refractory block

Approach: Design and select ceramic and metal materials based 
on structural and chemical potteries

Junhang Dong, 
University of Cincinnati



Interface Thermochemical Stability in the Layered 
Structure for Sensor Protection/Installation

Solid-Solid Connections: MgAl2O4 / 
Silicalite/Stainless-steel three-layer 
structure

Interface Stability: Stable at 750oC; stability 
at higher temperature is yet to be tested

Silicalite 
surface

MgAl2O4
surface

Spinal MgAl2O4

Silicalite

Stainless steel



Multilayer-Protected FOS Fabrication

Structure: (Zirconia)/(α-alumina)/(silica optical fiber)

Fabrication: inserting optical fiber into zirconia small tube by alumina adhesives

Stability: Fiber strongly attached to structure after thermal cycles; tested stability at 
750oC

Zirconia 
tube

α-alumina
filling

Optical
fiber

Zirconia 

Alumina

Optical Fiber alumina



Long-Term Stability of Sapphire 
Protection

• The structures of silicalite-coated-sapphire is stable after firing at 1000oC for 
200 h according to SEM and EDS examinations – No structural damage or 
elemental diffusion across the Silicalite/Sapphire interface was found.

Polycrystallin
e silicalite

Sapphire 
chip



Long-Term Stability of Sapphire 
Multilayer Protection

The structures of silicalite-coated-sapphire 
with an overcoats of ZAlMg (ZrO2-Al2O3-
MgO mixture) and ADZ (Zr1-0.75xAlxSiO4) are 
both stable after firing at 1000oC for 200 h 
according to SEM and EDS examinations –
No structural damage or inter-layer element 
diffusion was found. 

Silicalite

Sapphire

AZlMg

Silicalite

Sapphire

ADZ



Additive Manufacturing of Liner 
Blocks (Ceramic) with Embedded 

Sensors

Approach: Multi-extruder freeze-form extrusion based 
additive manufacturing

Ming Leu
Missouri University of Science and Technology 



Novel AM Process
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o A layer is deposited through a moving nozzle.
o Oil is pumped to surround the layer.
o Infrared lamp is used to partially dry the layer.
o Next layer is deposited.



Tool-path Planning Software
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o An algorithm has been developed and coded into computer software to
o Read the geometry of the part in STL format.
o Slice the part.
o Generate tool-path for each layer.
o Generate a G&M code for output to a manufacturing machine for part fabrication by 3D printing.



Example Printed Parts
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Mechanical Properties Measured
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o Relative density (Archimedes’): 98%
o Flexural strength (ASTM C1161 four-point bend): 364±50 MPa
o Young’s modulus: 390±21 GPa
o Fracture toughness (ASTM C1412 chevron-notched beam, configuration A): 4.5±0.1 MPa.m0.5
o Hardness (ASTM C1327 Vickers indentation test): 19.8±0.6 GPa



Microstructure Evaluation 
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o Microstructure was observed under SEM
o Grains are highly packed
o Average grain sizebased on lineal intercept: 2.1 μm



o Sapphire fibers of 75, 125 and 250 μm diameter were successfully embedded in the aluminum parts
o A signal was passed through the fibers to ensure that the embedded fibers are not damaged

Fiber Embedment



o Micrographs of the embedded fibers show good mechanical bonding between fiber and part
Fiber Embedment

Sapphire fiber

Alumina part



LASER-BASED MANUFACTURING LABORATORY

Additive Manufacturing of Pipe 
(Metal) with Embedded Sensors

Approach: Foil-Based Dual-Laser Additive Manufacturing 
Technology

Hai-Lung Tsai
Missouri University of Science and Technology 



LASER-BASED MANUFACTURING LABORATORY
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UV laser 
cutting
head 

Fiber laser 
scan head

Foil roller
Foil bed

X-Y stage

gas

Computer

Motion stage 
control

Fiber 
laser

Heater

Foil-Based AM System Setup
• System Design, Hardware and Software Implementations, and Integration.



LASER-BASED MANUFACTURING LABORATORY

As-Fabricated Samples
31



LASER-BASED MANUFACTURING LABORATORY

(a) Surface 
morphology of the 
raster-scan weld; 

(b) Cross-section of a 
single-line laser 
foil-welding onto a 
substrate; 

(c) Cross-section of 
the raster-scan 
weld of one-layer 
foil onto a 
substrate; 

(d) Cross-section of a 
multi-layer raster-
scan weld

Laser Welding 
32



LASER-BASED MANUFACTURING LABORATORY

Laser Surface Polishing - Modeling
Simulation of the thermal and melt flow processes of laser polishing for a hemispherical
bump on a flat substrate.
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LASER-BASED MANUFACTURING LABORATORY

Laser Surface Polishing - Experiment
The surface roughness can be significantly reduced from about 20 µm to 
less than 3 µm

Top surface of laser polishing Cross-section of laser polishing

Initial surface

Polished surface

Cross-section line

Initial
surface

Polished
surface
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LASER-BASED MANUFACTURING LABORATORY

Sensor-Embedded Parts Fabrication
35

3D models for sensor embedding. Sensors are embedded in the parts.
Curved sensors to be embedded 
in the printing process.



LASER-BASED MANUFACTURING LABORATORY

Thermal Stress-Strain Modeling of 
Embedded Sensors

Pressure Caused
Stress-Strain Distribution

(a) (b)

(c) (d)

Temperature Caused
Stress-Strain Distribution
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IIM system under construction
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Helical structure inside fiber
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Fs laser micromachined structures



Fs laser inscribed FBGs
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5 μm
Grating

Core ~ 9 μm

0.3 nm drift for 
20 days in 800°C



Fiber inline waveplate

• The polarization status can be flexibly changed by fs laser induced 
stress patterns inside the fiber

• Waveplates of any desired phase retardance can be fabricated in a SMF
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Fiber inline polarizer 

• Fs laser inscribed periodic stress 
patterns near the core of a single 
mode fiber 

• Polarization dependent core-
cladding mode coupling result in 
an inline polarizer 

• Fiber polarizers can be fabricated 
anywhere we want
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J. Huang, et al., Optics Express, 2014.



Diaphragm based ultrasonic sensor
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Summary of Progresses

Microwave photonic sensors and instrumentation 
have been developed and proven effective

 Protective coating materials have been identified 
and successfully coated on silica and sapphire

 Additive Manufacturing techniques have been 
developed for fabrication of smart parts
Multi-extruder freeze-form extrusion for ceramic parts

 Foil-Based Dual-Laser Additive Manufacturing for metals

 Information integrative smart manufacturing system

Models have been developed to study the induced 
stress/strain on the sensor caused by external 
high pressures or high temperatures



Future Work

• Continue optimization and improvement on
– Sensors: stability, loss sensitivity, temperature cross sensitivity, 

protection, embedment
– Additive manufacturing techniques and processes

• Ceramic: sintering, new materials, functionally gradient, mechanical tests
• Metal: surface improvement, 3D metal parts

– Modeling: temperature and pressure coupled models
– Protective coating: multilayer structure and coating on real sensors

• Test embedded sensors in smart parts 

• Making sensors while making the parts

• Initial tests of sensors embedded in the smart parts


