Ultra High Temperature Thermionic Sensor

NETL Crosscutting Research Review Meeting Scott Limb(PI), Scott Solberg, Arun Jose, George Daniels, Yunda Wang April 19, 2016

Funded under NETL Crosscutting Research: Development of Novel Architecture for Optimization of Advanced Energy Systems DE-FE0013062 Program Manager: Barbara Carney

DISCLAIMER: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

HEAT Sensor Project Goal Harsh Environment Adaptable Thermionics

- Develop sensors that measure process parameters
 - Gasifiers -- harsh fuel, oxidizer and combustion product environment
 - High Temperature (750-1600 C)
 - High Pressure (up to 1000 psi)
- Develop sensors that are wireless and selfpowered
 - Generate their own energy to operate and wirelessly transmit data
 - Avoids wires that may be a reliability or inconvenience concern

Thermocouple protection system for gasifiers (NETL website)

HEAT Sensor Project Concept

- Use Thermionic Materials as Sensors
 - Heat induced flow of electrons from a metal surface
 - Thermionic emissions occur at high temperature without need for external heater source
- Thermionic Technology
 - Diodes, Triodes, Tetrodes, etc...
 - Amplifier, Oscillators, Power Generation

The 1946 ENIAC computer used 17,468 vacuum tubes and consumed 150 kW of power

⁷⁰⁻watt tube audio amplifier selling for US\$2,680^[31] in 2011, about 10 times the price of a comparable model using transistors.^[32]

HEATS Platform Project Development

- Model and Pattern Thin Film Thermionic Layers
- Develop Experimental System
- Characterize Temperature
 Thermionic Response
- Develop High Temperature
 Hermetic Package
- Develop Subsystems for Thermionic Sensor Al2O3 Brick Package

Characteristics	Vacuum Tubes	HEATS Platform
Vacuum level	Similar	Similar
Package hermetic sealing temperature	<300 C	> 1300 C
Package operating temperature	<300 C	> 1300 C
Package dimensions	~ cm	~ mm to cm

HEAT Novel Sensor Brick Package

- High Temperature ^R
 Wireless SiC Circuit and Tests
- Power Generation Designs
- Pressure Sensor Design
- Temperature Sensor in Hermetic Package

SiC Wireless Circuit

- Normal wireless is not practical due to extremely high electrical attenuation of metal chamber to normal RF signals
- Utilize a magnetic coupling that is capable of overcoming the eddy currents and counter fields generated within the metal plate
- Generate an Electro-Magnetic simulation of the conditions in the chamber

External view of 1" thick alloy 800 enclosure with 8 inch copper planar spiral coil, 10 mil thick, 200 mil wide trace

SiC Wireless Circuit – Electromagnetic Model

Microwave Office with Axiem Solver Results

- The results indicate that the 8" diameter planar coils are capable of providing a link with 58 dB of attenuation at 20 kHz
- This indicates that a 30 dBm signal would be received at -28 dBm which is a reasonable level to be detected and processed

SiC High Temperature Wireless Test

- Enclosed alloy 800 steel box with 1" thick walls. Chamber isolation was >120 dB.
- A small signal 15 mW(12dBm) at 36 MHz is injected into the outside coil and is picked up by the matching internal coil.
- The signal of -94 dBm is readily detected by the spectrum analyzer.

SiC Wireless Circuit

- 300 C continuous use
- Silicon Carbide MOSFET based
 oscillator circuit
- Ceramic capacitors
- Ceramawire connections and air core
 wound inductors
- The external circuit would use conventional electronics
- Power provided by thermionic generator
- Sensor transducer controls frequency modulation

SiC Mosfet Oscillator

Thermionic Power Generation Concept

Thermal Modeling – 2D

Thermal Modeling – 2D

Parameter Study – Bar Length

Cathode/Anode Series Interconnect

Parameter study on the gold interconnect/electrode area ratio

Thermal Model – 3D Verification

Thermionic Generation Design

	Case 1	Case 2	Case 3
Tungsten bar	No	100mm	No
Interconnect-to-electrode area ratio	0.0014	0.0014	0.0056
Delta T	480 K	458 K	468 K
Counter part in 2D	~475K	NA	~ 415K

10 X 500um X 500um gold bump over 4 CMX4CM = 0.0016

Pressure Sensor

Simulation

Recommended Design for Pressure Sensing

Thickness (um)	Radius (cm)	Stopper Radius (cm)	Calculated Max Deflection @ r=0 and 1 atm (um)	Calculated Max Deflection @ r=0 and 100 atm (um)
300	2.5	1.0	35	561
400	3.0	1.5	21	532
500	4.5	2.0	25	485
1000	15.0	6.0	34	545

Max Deflection @ r=0 and 1 atm \rightarrow W_{1atm} Membrane Radius \rightarrow r_{membrane} Max Deflection @ r = 0 \rightarrow W_{max} Stopper Radius \rightarrow r_{stopper}

PARC | 19

A Xerox Compar

Hermeticity Testing

- Used single layer alumina plate to minimize plate curvature during curing
- Soaked for over 2500 hrs at 1300C.
- Cycled to room temperature 3x and repeatedly cycled between 1000C to 1300C.
- Outgassing was further reduced by an high temperature cycle of 1400C.

Firing in furnace #2

After firing, can see that some of sealant material flowed

Sample 20140910-A

Test Apparatus

- · Converted bell jar evaporator for thermionic testing
- Background pressure 1e-7 mbar vs 1e-4 mbar for MTI furnace
- Temperature control up to 1500C

Data – Theory vs Actual (no package)

Hermetic Thermionic Package

- Process develop hermetic package independently
- Process develop thermionic cathode and anode
- Integrate both processes
- What can go wrong?

Process Development

Issue	Observation	Solution
Background Oxygen	LaB6 Oxidation (EDX)	Zr Wire Getters
Al203 Volatility >1400 °C	Al203 deposition on LaB6 (EDX analysis)	 <1400 °C Lower Seal Temp >1400 °C Zr sputtered interior surface
Thermal variation in vacuum oven	Stress cracks in glueline preventing hermetic seal	 Thicker substrates Stability rings Smaller footprints Slower thermal rise and descent (3 full days for a single run)
Interconnect opens	Pt wire / LaB6 interface degradation	Sputtered Tungsten Bridge

Hermetic Thermionic Package Process

Cathode (bottom plate)

Anode (top plate)

Hermetically Packaged Thermionic Sensor

Key Milestone Status

	Current Status	Future Opportunities
Hermetic Seal Package	1400 °C stable process	Increase to 1500 °C
Temperature Sensor (active pumping)	1400 °C process +/- 2% repeatability	Improve repeatability
Temperature Sensor (hermetic package)	1300 °C process	Increase repeatability and temp to 1500 °C
Pressure Sensor	Dimensional Design Modeled	Build structure using new vacuum oven apparatus
Wireless Circuit	Modeled, Fabricated, and Tested Wireless Design	Test at 300 °C and integrate with system
Thermionic Generator	Designed, modeled, and testing 1 st prototype	Extensive process development needed