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U Reconstruct the 3D high temperature distribution within a boiler
via a novel fiber optic distributed temperature sensing system

DOE project

Boiler Distributed sensing system
Distributed optiyal r- r=1
fiber sensing syst
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\ Reconstruction algorithm temperature distribution

Photoabsorptive material (emitter)

Optical fiber Grating (detector)

Active sensing element

Overview of DOE project.

using optically generated acoustic waves.
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DOE project

‘ “‘\‘Mediuminaboile: %WWWV _"I_)_i?t_n;@’?@ie_nl“l .
() R e O Speed of acoustic waves depend
= @ | %4 i on the temperature of gaseous
Photoabsorptive material (emitter) ! k”;C:;»:‘:\:i i medium.
gl o
L~ e=osi 1 WU The TOF (time-of-flight) of an
: Grating (detector . o (N . . .
Optiea iber T {Ceioclon :O: M acoustic signal over a propagation
Active sensing element I N Boiler —
®) ©  path can be calculated as:

Principle of DOE project.

1 1
TOF(l )=|——d. = d.
) jC(x,y,z> ‘ Iz T(XY,2)

C(x,Y,2) the velocity of sound at position (xY,2)

z the ratio between the specific heats at constant pressure and volume of the gas
d(X, Y. 2) the reciprocal of velocity

j the number of paths; m

UMASS
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Timeine and current status

M 1/Develop Project Management Plan July,
2014

M 3/Clarify Requirementsfor Distributed [FaNosih

Sensing System Design 2015

M 4/Develop Active Sensing Element April,
2016

M5/Characterize Distributed Sensing April,

System | 2016

M 6/Develop Reconstruction Algorithm April,
2016

M7/Field Test Distributed Sensing System  [RIIE

| at Alstom 2016

M 8/Develop Distributed Sensing System || RENUGEGA

2017
MO/Field Test Distributed Sensing System RY%EVA
Il at Alstom 2017
M 10/Develop Final Report June,

2017
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M2/ Establish a Simulation M odel for January,
Furnace Temperature Profile 2015

July,
2014

January,

2015

April,
2015

April,
2016

April,
2016

April,
2016

100%

100%

100%

100%

100%

100%

5%

0%

0%

0%

Table 1. Milestone Status Report

Milestone Title/ Description Planned Actual Completion | Verification
Completion |Completion |Percentage |[Method
DE] Date

Plan
Submission to
DOE
Simulation
Program Files

Requirements
Report

Working
Prototype

Working
Prototype

2D and 3D
simulations
using Matlab
Test Report

Working
Prototype

Test Report

Deliver Final
Report to
DOE

Comments

(Progresstoward achieving milestone,
explanation of deviation from plan, etc.
This task is completed.

This task is completed.
This task is completed.

There is no variance from the original plan. All
of the activities are progressing according to
the original timeline.

There is no variance from the original plan. All
of the activities are progressing according to
the original timeline.

There is no variance from the original plan. All
of the activities are progressing according to
the original timeline.

Plan the field test in April.

Not started yet.
Not started yet.
Not started yet.
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Timeine and current status
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Project timeline (Gantt Chart).
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Experimental results

Signal generator (Fiber end)

.

The photoacoustic principle [1]. The structure of the fiber optic ultrasound generator.

30
25w
| Laser | gl '
Laser --
% 10}
T[T T Tttt S 0 B =
Ultrasound probe Hydrophone :o
4 > .10} .
Water

20 F

- ) -11 10 9 3 -7

Experiment setup: test a fiber end generator. .
Time (us)

Profile of ultrasound signal [2].

€ Note: Gold-nanocomposite was coated on a 400um fiber tip. A 532 nm Nd:YAG

nanosecond laser (Surelite I-10, Continuum) was utilized as the source. A hydrophone m

(HGL-0200, Onda) was used as a receiver to collect the ultrasound signals.
UMASS
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Experimental results

Signal generator (Sidewall configuration 1)

Cladding
Core ———m

Gold-nanocomposite

Coat gold nanocomposite on the sidewall of

optical fibers[3]. Sidewall ultrasound generator configuration 1.

0.5
0.4
0.3
0.2—.

0.1

Voltage (mV)

0.0

-0.14

-0.2

19 ' 2I0 ' 2I1 ' 2IZ ' 2I3 ' 2I4
| Time (us)
Experiment setup: test a sidewall generator. Acoustic signal generated from sidewall configuration 1.

€ Note: Generated ultrasound signal was from the sidewall of a 400um fiber. A 532 nm Nd:YAG P&
nanosecond laser (Surelite I-10, Continuum) was utilized as the optical radiation source. A z
Learning with purpofydrophone (HGL-0200, Onda) was used as a receiver to collect the ultrasound signals. UMASS



Experimental results

Signal generator (Sidewall configuration 2)

t
Gold-nanocomposite

Aluminum plate

Sidewall ultrasound generator configuration 2.

Experimental setup: test the sidewall
ultrasound generator configuration 2.

2.5+

2.0

1.54

1.0

0.5+

0.0+

Volatage (mV)

-0.5

-1.04

-1.51

2.0 : : ; : ; : ; : i :
19 20 21 22 23 24

Time (us)
Acoustic signal generated from sidewall

ultrasound generator configuration 2.

>
€ Note: Ultrasound signal generated from this configuration on the aluminum plate was much ,

Learning with Purpose

higher than pervious configuration when the laser power and detection distance is the same. =~ UMASS
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Experimental results

Photo of FBG test setup (FBG as the receiver)

Signal receiver (Fiber Bragg Grating )
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The ultrasound signal received by

FBG in frequency domain
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The ultrasound signal received by Hydrophone in
frequency domain ?

UMASS
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Experimental results

Water temperature measurement

Coupler
C b
Ultrasound probe Hydrophone
—
Smmt0.Tmm
Water temperature is adjusted

Schematic diagram of the water temperature
measurement setup [1].

3.55+

3.50 '\

3.45+ '\

3.40- \
3.35 \_

3.30 .

Travel time (us)

3.254 ]

Temperature (°C)

Travel time V.S. water temperature based on Marczak
equation. (Range of validity: 0 - 95 “C at atmospheric
pressure)

Learning with Purpose

C =1.402385 x 10°% 4+ 5.038813T — 5.799136 x 10 2T 4+ 3.287156 x
10 4T3 -1.398845x 10 ¢T* 4 2.787860 x 10 °TS

€ Note: It demonstrated the temperature measurement capability of the
fiber optic ultrasound transducer system.

Photo of the water temperature measurement setup.
= Decronee
355
350
g 2]
£ sl
53.35_
3301
B S P S S A

Temperature (°C)

Experimental results: water temperature V.S. travel time
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Experimental results

Aluminum plate temperature measurement

| Coupler
Nanosacond |
Laser | :I:'_ ml_:::!.
Circulator
Ulktrasonic _
Gaharator '
¥
i 7 S ' i
(( ) Aluminu
&\ s/ Plate "1
Photodetector
Schematic diagram of steel plate temperature measurement [4]. Photo of the Aluminum plate temperature measurement.
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Experimental results

Aluminum plate temperature measurement
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>
€ Note: It proved that the FBG could be used as the signal receiver and K
Learning with Purpose also proved the fiber optic ultrasound transducer system. UMASS



Experimental results

Air temperature test

Experimental setup: Measure the temperature of a
torch flame [4].

Experimental results of air temperature test

in frequency domain.
Learning with Purpose
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Experimental results of air temperature test in time domain.

€ Note: It demonstrated that fiber optic
ultrasound transducer system can be used to =
measure the air temperature. ,A
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Cenerator/Receiver
Position

Experimental results

Air temperature reconstruction
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Air temperature test experimental setup. (Top view)
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The ultrasound signal between positions 2 and 8.

€ Note: The air temperature test can be reconstructed by
using this fiber optic ultrasound transducer system.
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Experimental results

Signal distance test
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Signal distance test experimental setup.
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e \\ The ultrasound signal at different distance.
o € Note: This fiber optic ultrasound transducer system
> o ;f;tance (c;:) °° °° can work at a distance of 0.6 meter. A 532 nm P
The ultrasound signal attenuation with distance. Nd:YAG nanosecond laser (Surelite 1-10, Continuum) K

e D B was utilized as the optical radiation source. UMASS



| ncrease signal strength of generator
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€ Note: This fiber optic ultrasound transducer system

— could work at a distance of 1 meter. 600 um ﬁm
Carbon black + PDMS and gold-nanocomposite Carbon black + PDMS was used in this system.uﬁ s
LOWELL
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Establish Simulation M odel

1. Develop furnace temperature field model
Governing Equation:
2D case : unimodal symmetric, unimodal deflection and bimodal distribution
3D case : unimodal symmetric and unimodal deflection distribution
Alstom: 3D temperature distribution in field test stage.

2. Develop acoustic propagation model and specify the sensor locations

Sensors location
*  Reconstruction algorithm will be affected by propagation paths.
»  Geometry of the tested field (uniformly distributed)

»  Temperature distribution (regions with more temperature variations should have
more weights)

Learning with Purpose LOWELL



Establish Simulation M odel

1. Traditional sensors location for power plant boilers (Fig. 1)
All acoustic sensors can both generate and receive signals

n sensors will generate signals along n(n-1)/2 paths, effective paths will
be less due to infeasible ones between some sensors.

1. Nonlinear Programming (NLP) for optimization of sensor locations
An initial choice is given in Fig. 2.

/A

Fig. 1.
UMASS
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CDMA Modulation

—_—

One of Orthogonal ¥ Carrier
Code Sequence —r —_—n Medium > *‘)r/{.::" Same Code Sequence
il ( Aco Signal) [ ___4'____
Laser Sequence Modulated Received Demodulated | Wideband o .
®_~ Signal ~ || Acoustic Signal’ Signal Acoustic Signal |  Filter 4-@@—.
Carrier

Optical Fiber

Example: 2-transmitter- 1 -receiver scenario

Address Codes : 31-bit pseudo-noise sequences

Binary Phase-shift Keying (BPSK) modulation:

simulate the acoustic signals activated by PN laser signals
Background Noise: additive Gaussian white noise (SNR = - 10db)
Flight delay: different path

Signal detection: sliding correlation

Learning with Purpose
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CDMA Modulation

e Transmitters : Modulation for Signals

Activation signal for sensor1 Activation signal for sensor2
2 ‘ 2
1t g 1
0 ! ! 1 1 O 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
PN sequence for sensor1 PN sequence for sensor2
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BPSK acoustic signal for sensor1 BPSK acoustic signal for sensor2
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e Boiler : Signals Transmission

flight delayed acoustic signal for sensor 1 is

CDMA Modulation

2 \
0 |
-2 \ \ \
50 100 150 200 250 300 350
flight delayed acoustic signal for sensor 2 is
2 \
0 |
-2 \
50 100 150 200 250 300 350
Combined signals:
5 \ \
O |
-5 \ \ \
50 100 150 200 250 300 350
Received signals with white Gaussian noise:
200 ‘ ‘
100 -
O |
-100 \ \ \ \ \ \
0 50 100 150 200 250 300 350
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CDMA Modulation

e Receiver: Demodulation and Flight Time Detection

BPSK demodulation processing:

200 ‘ ‘
100 - —
0f |
-100— —
-200 \ \ \ \ \ \
0 50 100 150 200 250 300 350
Signals after BPSK demodulation:
40 \ \ \ \ \
L 1] (o |
9 Q T o ¢ o @ 0 e ? o ? i o | ?
[CRNOING) (E O 6 6 6 (L 5068
-201-
-40 \ \ \ \ \ \
0 5 10 15 20 25 30 35
Received Signal With Arriving time detected:
200

I I I
Received signals

100 - @ sensor1signal arriving | |
sensor2 signal arriving

0 VWW\/\/\/ i

UMASS
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Temperature Reconstruction Algorithm with GRBF

2D temperature field case I:
Unimodal symmetric T(X,y) =1000+ 600sin(zx/ length)sin(zy/ height)

1000 ,;;;;;élllll% IS, \ 0 NN . 5 1
<. >, Notes: In the simulation, 10 sensors
" %é%::?w&&%\\‘w/ 0

S were evenly distributed, 10 basis
eal Temperature Field functions were used and 24 paths are

chosen. The matching error was
1.95%.

0
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Reconstructed Temperature Field

/A
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Temperature Reconstruction Algorithm with GRBF

« 2D temperature field case II:

Unimodal deflection
T(X,y) = 600exp((—(x—4)*)/length—((y—-3)*)/(2*height))+1000

Notes: In the simulation, 10
sensors were evenly distributed, 10
basis functions were used and 24
paths were chosen. The matching
error was 0.8%.
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Temperature Reconstruction Algorithm with GRBF

e 3D temperature field case I:

3D Unimodal symmetric model:

7=0 of the real
temperature field

Z=0 of the reconstructed
temperature field

Learning with Purpose
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Temperature Reconstruction Algorithm with GRBF

« 3D temperature field case I:

3D Unimodal symmetric model:

08 -~
06
L 04

X slice of the real temperature field

02

X slice of the reconstructed temperature field

S
0.5

. . y
Learning with Purpose X LOWELL




Temperature Reconstruction Algorithm with GRBF

* 3D temperature field case I:

3D Unimodal symmetric model:

contour x=0 of the real T

e real 1 ——
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Temperature Reconstruction Algorithm with GRBF

« 3D temperature field case II

del
800+ 600cos(Xx—0.3)cos(2y—0

24 sensors are distributed and 30 Gauss

3D unimodal deflection mo

52)

4)cos(l.

T(XY,2)=

1S MO

basis

1an

del,

: In th

Notes

()

%

A

O Qg
50 G
S
O A
O RGOS
> RO AR
< ..."“....“.”“”."....“.“.““w“....““..““.w““..”“” )
O 4 ....“. ..........:.....
< .
=
en
X o
e
(Q\| O
X .=
~
N <
wn O
o ypu— e
+~
o=
- 5
Q >
S o
(@ o
g X
o <t
C p—
O w
e 00
-
e O
ho] wu Pk
B
O o© S
.“
= -
o ©
= O
S <
N
:
.S M
i
O =
S &
G- <

7. slice of the reconstructed

Z slice of the real temperature field

th Purpose

ing wi

Learn



Temperature Reconstruction Algorithm with GRBF

e 3D temperature field case II:

3D unimodal deflection model:

- B 18} > \‘
16t /‘
1200 //’T:::,:////\k::j‘ 14\\—/)//
Z=0 of the real oy T  ———
temperature field 4 ‘ J
ol \\ |
0 )

Z=0 of the reconstructed « /
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06 \ y i
04 /’/ \\\ |
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UMASS
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Temperature Reconstruction Algorithm with GRBF

e 3D temperature field case II:

3D unimodal deflection model:

X=0 of the real
temperature field

o] — “\\\\\
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Future plan
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