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 Brief overview of DOE project
 Timeline and current status 
 Experimental results

1. Signal generator and receiver
2. Water temperature measurement
3. Steel plate temperature measurement
4. Air temperature test and reconstruction
5. Signal distance test
6. Increase signal strength of generator

 Establish Simulation Model
 CDMA Modulation
 Temperature reconstruction algorithm with GRBF
 Future plan
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DOE projectDOE project

 Reconstruct the 3D high temperature distribution within a boiler
via a novel fiber optic distributed temperature sensing system
using optically generated acoustic waves.

Overview of DOE project.

Distributed optical 
fiber sensing system

Active sensing element

Boiler

Reconstruction algorithm

+

Reconstructed 
temperature distribution

Distributed sensing system

Boiler

Grating (detector)

Photoabsorptive material (emitter)

Optical fiber
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DOE projectDOE project
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 Speed of acoustic waves depend
on the temperature of gaseous
medium.

 The TOF (time-of-flight) of an
acoustic signal over a propagation
path can be calculated as:

the velocity of sound at position
the ratio between the specific heats at constant pressure and volume of the gas  
the reciprocal of velocity
the number of paths;

( , , )C x y z ( , , )x y z
Z
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j

Principle of DOE project.
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Milestone Title/ Description Planned 
Completion
Date

Actual
Completion
Date

Completion 
Percentage

Verification
Method

Comments 
(Progress toward achieving milestone, 
explanation of deviation from plan, etc.)

M1/Develop Project Management Plan July, 
2014

July, 
2014

100% Plan 
Submission to 
DOE

This task is completed.

M2/ Establish a Simulation Model for 
Furnace Temperature Profile

January, 
2015

January, 
2015

100% Simulation 
Program Files

This task is completed.

M3/Clarify Requirements for Distributed 
Sensing System Design

April, 
2015

April, 
2015

100% Requirements 
Report

This task is completed.

M4/Develop Active Sensing Element April, 
2016

April, 
2016

100% Working 
Prototype

There is no variance from the original plan. All 
of the activities are progressing according to 
the original timeline.

M5/Characterize Distributed Sensing 
System I

April, 
2016

April, 
2016

100% Working 
Prototype

There is no variance from the original plan. All 
of the activities are progressing according to 
the original timeline.

M6/Develop Reconstruction Algorithm April, 
2016

April, 
2016

100% 2D and 3D 
simulations 
using Matlab

There is no variance from the original plan. All 
of the activities are progressing according to 
the original timeline.

M7/Field Test Distributed Sensing System 
I at Alstom

July, 
2016

5% Test Report Plan the field test in April. 

M8/Develop Distributed Sensing System II January, 
2017

0% Working 
Prototype

Not started yet.

M9/Field Test Distributed Sensing System 
II at Alstom

May, 
2017

0% Test Report Not started yet.

M10/Develop Final Report June, 
2017

0% Deliver Final 
Report to 
DOE

Not started yet.

Timeline and current status Timeline and current status 
Table 1. Milestone Status Report
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Timeline and current status Timeline and current status 

Project timeline (Gantt Chart).

Phase I

Task 1.0

Task 2.0

Task 3.0

Phase II

Task 4.0 - Subtask 4.1

Task 4.0 - Subtask 4.2

Task 4.0 - Subtask 4.3

Task 5.0

Task 6.0

Phase III

Task 7.0 - Subtask 7.1

Task 7.0 - Subtask 7.2

Task 8.0

Task 9.0

7/1/14 4/1/15

7/1/14 1/1/15
1/1/15 4/1/15
1/1/15 8/1/16

1/1/15 10/1/15
7/1/15 1/1/16

4/1/16

4/1/15 4/1/16
4/1/16 7/1/16

10/1/15

10/1/1610/1/15

7/1/17

7/1/16 1/1/17

7/1/16 1/1/17
1/1/17 7/1/17

M1
7/1/14

M2
M3

M4

M5

M6

M7

M8

M9
M10

PI Cao
PI Wang

10/1/15
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Experimental resultsExperimental results
Signal generator (Fiber end)

The structure of the fiber optic ultrasound generator.
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Profile of ultrasound signal [2].

The photoacoustic principle [1].

 Note: Gold-nanocomposite was coated on a 400μm fiber tip. A 532 nm Nd:YAG
nanosecond laser (Surelite I-10, Continuum) was utilized as the source. A hydrophone
(HGL-0200, Onda) was used as a receiver to collect the ultrasound signals.

Experiment setup: test a fiber end generator.

Laser

Ultrasound probe Hydrophone

Water
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Experimental resultsExperimental results
Signal generator (Sidewall configuration 1)

Coat gold nanocomposite on the sidewall of
optical fibers[3].

Experiment setup: test a sidewall generator.

Sidewall ultrasound generator configuration 1.
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Acoustic signal generated from sidewall configuration 1.

 Note: Generated ultrasound signal was from the sidewall of a 400μm fiber. A 532 nm Nd:YAG
nanosecond laser (Surelite I-10, Continuum) was utilized as the optical radiation source. A
hydrophone (HGL-0200, Onda) was used as a receiver to collect the ultrasound signals.
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Experimental resultsExperimental results
Signal generator (Sidewall configuration 2)

Sidewall fiber generator mounted on an aluminum plate [3]. Sidewall ultrasound generator configuration 2.

Experimental setup: test the sidewall
ultrasound generator configuration 2.
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Acoustic signal generated from sidewall 
ultrasound generator configuration 2.

 Note: Ultrasound signal generated from this configuration on the aluminum plate was much 
higher than pervious configuration when the laser power and detection distance is the same.
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Experimental resultsExperimental results
Signal receiver (Fiber Bragg Grating )

Photo of FBG test setup (FBG as the receiver) Photo of FBG test setup (Hydrophone as receiver)
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The ultrasound signal received by Hydrophone in 
frequency domain

 Note: FBG receiver got same results as hydrophone in frequency domain. 
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Experimental resultsExperimental results
Water temperature measurement

Schematic diagram of the water temperature 
measurement setup [1]. Photo of the water temperature measurement setup.

Travel time V.S. water temperature based on Marczak 
equation. (Range of validity: 0 - 95 °C at atmospheric 
pressure) 

Experimental results: water temperature V.S. travel time

 Note: It demonstrated the temperature measurement capability of the 
fiber optic ultrasound transducer system.
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Experimental resultsExperimental results
Aluminum plate temperature measurement

Schematic diagram of steel plate temperature measurement [4]. Photo of the Aluminum plate temperature measurement.
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Experimental resultsExperimental results
Aluminum plate temperature measurement

Experimental results of aluminum plate temperature test 
in (a) time domain and (b) frequency domain by FBG

Signals of FBG (a) and PZT (b) 

 Note: It proved that the FBG could be used as the signal receiver and 
also proved the fiber optic ultrasound transducer system.
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Experimental resultsExperimental results
Air temperature test

Experimental setup: Measure the temperature of a
torch flame [4].

Experimental results of air temperature test in time domain.

Experimental results of air temperature test 
in frequency domain.

 Note: It demonstrated that fiber optic 
ultrasound transducer system can be used to 
measure the air temperature.
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Experimental resultsExperimental results
Air temperature reconstruction

Air temperature test experimental setup. (Top view)

The ultrasound signal between positions 2 and 8.

 Note: The air temperature test can be reconstructed by 
using this fiber optic ultrasound transducer system.
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Experimental resultsExperimental results
Signal distance test
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Signal distance test experimental setup. 
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 Note: This fiber optic ultrasound transducer system
can work at a distance of 0.6 meter. A 532 nm
Nd:YAG nanosecond laser (Surelite I-10, Continuum)
was utilized as the optical radiation source.
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Increase signal strength of generatorIncrease signal strength of generator

Experimental setup. 
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 Note: This fiber optic ultrasound transducer system
could work at a distance of 1 meter. 600 um fiber and
Carbon black + PDMS was used in this system.Carbon black + PDMS and gold-nanocomposite
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1. Develop furnace temperature field model
Governing Equation:
 2D case : unimodal symmetric, unimodal deflection and bimodal distribution
 3D case : unimodal symmetric and unimodal deflection distribution

Alstom: 3D temperature distribution in field test stage. 

2. Develop acoustic propagation model and specify the sensor locations
Sensors location

• Reconstruction algorithm will be affected by propagation paths.  
 Geometry of the tested field (uniformly distributed)
 Temperature  distribution (regions with more temperature variations should have 

more weights)

Establish Simulation ModelEstablish Simulation Model
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1. Traditional sensors location for power plant boilers (Fig. 1)
All acoustic sensors can both generate and receive signals

n sensors will generate signals along n(n-1)/2 paths, effective paths will 
be less due to infeasible ones between some sensors.

1. Nonlinear Programming (NLP) for optimization of sensor locations
An initial choice is given in Fig. 2.

Establish Simulation ModelEstablish Simulation Model

Fig. 1. Fig. 2. 
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CDMA ModulationCDMA Modulation

Example: 2-transmitter-1-receiver scenario
• Address Codes : 31-bit pseudo-noise sequences
• Binary Phase-shift Keying (BPSK) modulation: 

simulate the acoustic signals activated by PN laser signals
• Background Noise: additive Gaussian white noise (SNR = - 10db)
• Flight delay: different path
• Signal detection: sliding correlation
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CDMA ModulationCDMA Modulation
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• Transmitters : Modulation for Signals
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• Boiler : Signals Transmission

CDMA ModulationCDMA Modulation
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• Receiver: Demodulation and Flight Time Detection

CDMA ModulationCDMA Modulation
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Temperature Reconstruction Algorithm with GRBFTemperature Reconstruction Algorithm with GRBF
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( , ) 1000 600sin( / )sin( / )T x y x length y heightπ π= +

Notes: In the simulation, 10 sensors
were evenly distributed, 10 basis
functions were used and 24 paths are
chosen. The matching error was
1.95%.

• 2D temperature field case I:
Unimodal symmetric
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Temperature Reconstruction Algorithm with GRBFTemperature Reconstruction Algorithm with GRBF

• 2D temperature field case II: 
Unimodal deflection
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Temperature Reconstruction Algorithm with GRBFTemperature Reconstruction Algorithm with GRBF

• 3D temperature field case I:
3D Unimodal symmetric model: 

Notes: In this model, 24 sensors are distributed and 30 Gaussian basis 
functions are used; the compact set is 2 ൈ 2 ൈ 1; the average 
approximation error is 10.14 °C over the entire region. 
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Temperature Reconstruction Algorithm with GRBFTemperature Reconstruction Algorithm with GRBF

contour z=0 of the reconstructed T

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0
5

10
15

20

0
5

10

15
20

800

1000

1200

1400

1600

1800

2000

mesh z=0 of the reconstructed T

contour z=0 of the real temperature field

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0
5

10
15

20

0
5

10

15
20

600

800

1000

1200

1400

1600

mesh z=0 of the real T

• 3D temperature field case I:
3D Unimodal symmetric model: 

Z=0 of the real 
temperature field 

Z=0 of the reconstructed 
temperature field
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Temperature Reconstruction Algorithm with GRBFTemperature Reconstruction Algorithm with GRBF

• 3D temperature field case I: 
3D Unimodal symmetric model: 
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Temperature Reconstruction Algorithm with GRBFTemperature Reconstruction Algorithm with GRBF

contour x=0 of the reconstructed T
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• 3D temperature field case I: 
3D Unimodal symmetric model: 
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Temperature Reconstruction Algorithm with GRBFTemperature Reconstruction Algorithm with GRBF

• 3D temperature field case II:
3D unimodal deflection model: 

Notes: In this model, 24 sensors are distributed and 30 Gaussian basis 
functions are used; the compact set is 2 ൈ 2 ൈ 1; the average 
approximation error is 14% over the entire region. 
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Temperature Reconstruction Algorithm with GRBFTemperature Reconstruction Algorithm with GRBF

• 3D temperature field case II:
3D unimodal deflection model: 
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Temperature Reconstruction Algorithm with GRBFTemperature Reconstruction Algorithm with GRBF
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• 3D temperature field case II: 
3D unimodal deflection model: 

X=0 of the real 
temperature field 

X=0 of the reconstructed 
temperature field
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M7/Field Test Distributed Sensing System I (One 
point) at GE (Start in April )

M8/Develop Distributed Sensing System II 
(Multiple points)

M9/Field Test Distributed Sensing System II at 
Alstom

Future planFuture plan
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