Development of a Ceramic Coaxial Cable Sensor-Based System for Long-Term Down Hole CO2 Sequestration Monitoring

Runar Nygaard²
Hai Xiao¹
Xiaoming He²
DE-FE0009843

Title
Robust Ceramic Coaxial Cable Down-Hole Sensors for Long-Term In Situ Monitoring of Geologic CO2 Injection and Storage

PI’s
Runar Nygaard, (S&T)
Hai Xiao (Clemson University)
Xiaoming He (S&T)

Program Manager
Barbara Carney
Outline

• Long term CO2 injection integrity monitoring – problem statement

• Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring

• To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure

 – Strain
 – Temperature
 – Pressure

• Evaluated a bench scale wellbore system

• Summary
Potential leakage pathways of CO₂

Matrix
- Capillary entry pressure
- Seal permeability
- Pressure seals
- High permeability zones

Structural
- Flow on faults
- Flow on fractures
- Flow between permeable zones due to juxtapositions

Geomechanics
- Hydraulic fracturing
- Creation of shear fractures
- Earthquake release

Diagram:
- CO₂ Injection
- Reactive Fault
- Abandoned Well
- Exceed P_c-entry
- Juxtaposition
- High K Zone
- Storage formation
- Cap rock
- Permeable zone
- Upper layer
- Natural fracture
- Shear fracture
- Hydraulic fracture
- Earthquake
Wellbore Leakage

PRIMARY
1. Incomplete annular cementing job, doesn’t reach seal layer
2. Lack of cement plug or permanent packer
3. Failure of the casing by burst or collapse
4. Poor bonding caused by mudcake
5. Channeling in the cement
6. Primary permeability in cement sheath or cement plug

SECONDARY
7. De-bonding due to tensile stress on casing-cement-formation boundaries
8. Fractures in cement and formation
9. Chemical dissolution and carbonation of cement
10. Wear or corrosion of the casing
Long term CO$_2$ injection integrity monitoring – problem statement

- **Background:**
 - Subsurface geologic formations offer a potential location for long-term storage of CO$_2$.
 - Achieve the goal to account for 99% of the injected CO$_2$ requires advanced monitoring technology to optimize the injection processes and forecast the fate of the injected CO$_2$.

- **Status:**
 - Due to the complexity, no single data type is sufficient by itself; different monitoring and characterization approaches are deemed to be necessary.
 - In situ down-hole monitoring of state parameters (e.g., pressure, temperature, etc.) provides critical and direct data points to validate the models, optimize the injection scheme, detect leakage and track the plume.
 - Current down-hole sensors are insufficient to meet the reliability and cost requirements.
Outline

• Long term CO2 injection integrity monitoring – problem statement

• Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring

• To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure
 – Strain
 – Temperature
 – Pressure

• Evaluated a bench scale wellbore system

• Summary
The goal is to develop a monitoring system combined for the wellbore and the reservoir monitoring.
Distributed Coaxial-Cable Sensing
Outline

• Long term CO2 injection integrity monitoring – problem statement

• Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring

• To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure
 – Strain
 – Temperature
 – Pressure

• Evaluated a bench scale wellbore system

• Summary
CC-FPI Sensor Principle

- Temperature sensing
 - Dielectric thermal effect
 - Thermal expansion
- Strain sensing
 - Length elongation

\[f_{\text{valleys}} = \frac{(1+2N)c}{4} \cdot \frac{1}{L \cdot n}, N = 1, 2, \ldots \]
Outline

• Long term CO2 injection integrity monitoring – problem statement

• Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring

• To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure

 – Strain
 – Temperature
 – Pressure

• Evaluated a bench scale wellbore system

• Summary
Distributed strain sensors on a cantilever

- A cable with multiple FPIs is bonded on a cantilever

Gate/filter the reflectors

Strain is related to spectrum shift
Strain distribution on a cantilever

- Press one end and fix the other end

\[
M(x) = P(x - L)
\]

bending strain

\[
\varepsilon = \frac{Mz}{EI}
\]

strain distribution of nine sections on the cantilever with three end load
Real time distributed strain monitoring

Bend at one end

Press in the middle

\[a = 0.8L \]
Beam shape strain sensor

- A pair of distributed strain sensors are implemented to monitor strains at y and z direction.
Displacement-Strain-Transformation

- Displacement is an integral of distributed strain

\[
y[i] = \frac{1}{r} \sum_{n=1}^{i} \left(\sum_{m=1}^{n} \varepsilon_{\text{top}} L_m \right) L_n
\]

\[
z[i] = \frac{1}{r} \sum_{n=1}^{i} \left(\sum_{m=1}^{n} \varepsilon_{\text{side}} L_m \right) L_n
\]
Coaxial cable torsion sensor

Multiple-reflectors to form FPIs in one cable

The fixed reflectors are fixed on the structure

The torsion is related with measured strain

\[
\frac{\Delta l}{l} = \frac{\rho^2 \varphi^2}{d^2 + (\rho \varphi)^2} \left(\frac{\Delta \varphi}{\varphi} \right) = \sin^2 \gamma \left(\frac{\Delta \varphi}{\varphi} \right)
\]
A single torsion sensor test

Fix at one end, rotate the other end

1.83 MHz/(rad/m)
Distributed torsion sensor test

- The central sensor is under torque, while the other two is relaxed.

Torsion response in central sensor

Small cross-talk

Torsion distribution of three sensors
CCFPI Sensor design development

- Half-way holes
 - Unstable structure
 - Package issue

- Crimp ferrule
 - Easy fabrication
 - No further packaging needed
CCFPI Strain Sensors

\[
\frac{\Delta f_N}{f_N} = \left(\frac{P_{\text{eff}}}{2} - 1 \right) \Delta \varepsilon - \left(\frac{\alpha_{\text{TCK}}}{2} + \alpha_{\text{CTE}} \right) \Delta T
\]

Temperature cross talk
Coaxial Cable Strain Sensor

- Strain sensor is sensitive to temperature

\[
\frac{\Delta f_N}{f_N} = \left(\frac{P_{\text{eff}}}{2} - 1\right) \Delta \varepsilon - \left(\frac{\alpha_{\text{TCK}}}{2} + \alpha_{\text{CTE}}\right) \Delta T
\]

- Hollow coaxial cable to minimize temperature cross-talk: \(\alpha_{\text{TCK}} = 0 \)
Strain Response

11.06 ppm/µε

Temperature cross talk is reduced to 20 ppm/°C, which is very close to the theoretical minimum of 16.6 ppm/°C (limited by the CTE of copper)
Outline

• Long term CO2 injection integrity monitoring – problem statement

• Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring

• To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure
 – Strain
 – Temperature
 – Pressure

• Evaluated a bench scale wellbore system

• Summary
Coaxial Cable Temperature Sensor

- Reflectors are generated by crimped copper rings
• Repeatable linear temperature response with high sensitivity
Temperature response

- Both materials and lengths will vary with temperature

\[\frac{\Delta f_N}{f_N} = \left(\frac{\alpha_{TCK}}{2} + \alpha_{CTE} \right) \Delta T \]

Dielectric
Physical expansion

valley near 4.8643 GHz

244 kHz/°C

- Test setup uniformity
 - ±1.9 °C @ 100°C
- Deviation of four tests
 - ±3 °C
Temperature response

- Temperature sensitivity
 - 18 ppm/°C
- CTE of copper
 - 16.6 ppm/°C
Pressure effects test set up

(a) VNA;
(b) pump;
(c) data acquisition;
(d) HPHT cell;
(e) temperature controller.
Pressure response on temperature sensor at constant temperature

40 °C

80 °C

40 °C

80 °C
Pressure effect on Temperature sensor

STATISTICAL RESULTS

<table>
<thead>
<tr>
<th>Source</th>
<th>S.S.</th>
<th>F Ratio</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>8.7e+14</td>
<td>2100</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Pres</td>
<td>3.1e+14</td>
<td>751</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Temp*Pres</td>
<td>1.1e+13</td>
<td>28.9</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Temp*Temp</td>
<td>7.8e+12</td>
<td>19.0</td>
<td><0.0007*</td>
</tr>
<tr>
<td>Pres*Pres</td>
<td>6.0e+12</td>
<td>14.5</td>
<td><0.0019*</td>
</tr>
</tbody>
</table>

\[\Delta F = 817 \times 10^3 + 10.43 \times 10^6 \times \left(\frac{T - 67.5}{42.5} \right) - 6.24 \times 10^6 \times \left(\frac{P - 507.35}{492.65} \right) - 2.45 \times 10^6 \]
\[\times \left(\frac{T - 67.5}{42.5} \right) \times \left(\frac{P - 507.4}{492.7} \right) + 1.86 \times 10^6 \times \left(\frac{T - 67.5}{42.5} \right) \times \left(\frac{T - 67.5}{42.5} \right) + 1.62 \times 10^6 \]
\[\times \left(\frac{P - 507.4}{492.7} \right) \times \left(\frac{P - 507.4}{492.7} \right) \]
Modified temperature sensor
minimized pressure effect

STATISTICAL RESULTS

<table>
<thead>
<tr>
<th>Source</th>
<th>S.S.</th>
<th>F Ratio</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>3.23e+14</td>
<td>178</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Pres</td>
<td>7.52e+11</td>
<td>0.413</td>
<td>0.5307</td>
</tr>
<tr>
<td>Temp*Pres</td>
<td>4.85e+10</td>
<td>0.027</td>
<td>0.8727</td>
</tr>
<tr>
<td>Temp*Temp</td>
<td>1.15e+12</td>
<td>0.635</td>
<td>0.4390</td>
</tr>
<tr>
<td>Pres*Pres</td>
<td>3.78e+10</td>
<td>0.021</td>
<td>0.8874</td>
</tr>
</tbody>
</table>

$$\Delta F = -6.262 \times 10^6 - 6.362 \times 10^6 \times \left(\frac{T - 67.5}{42.5}\right)$$
Outline

• Long term CO2 injection integrity monitoring – problem statement

• Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring

• To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure
 – Strain
 – Temperature
 – Pressure

• Evaluated a bench scale wellbore system

• Summary
Microwave pressure sensor

- Principle: reservoir and capillary for amplification similar to the liquid in glass thermometer

\[
\Delta V_r = \frac{pD}{4tE} (5 - 4\nu)
\]

The deformation is manifested by liquid column

\[
\Delta l = \frac{\Delta V_r}{S_c}
\]

Capillary area
Temperature cross-talk reduction

- The pressure sensor is also sensitive to temperature
- Fill low CTE material to minimize liquid volume

\[
X_{talk_T} \propto \frac{V_{\text{liquid}}}{V_{\text{reservoir}}}
\]
Liquid column interrogation

- Use microwave to measure the length of the liquid column in capillary

- Microwave travels slower in liquid than air
- The electrical length between two reflectors is liquid column dependent

\[\Delta L = \Delta \varepsilon \Delta l \]

\[\frac{\Delta f}{f} = - \frac{\Delta L}{L} \]

Spectrum shift with electrical length variation
Pressure sensor test setup

- Capillary tube
- Sensor under test
- Testing chamber
- Weight
- Motor oil
- SS Reservoir
- Glass rod
- Dead weight pressure tester
- VNA
- Testing chamber
Pressure test results

- Sensitivity
 - Sensitivity: 7 kHz/psi

- Stability
 - Stable and repeatable
 - Detection limit ~ 1 psi
 - Stability: \(\sigma = 1.25 \) psi
Outline

• Long term CO2 injection integrity monitoring – problem statement

• Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring

• To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure

 – Strain
 – Temperature
 – Pressure

• Evaluated a bench scale wellbore system

• Summary
Proposed coaxial cable sensing system deployment method
Casing deformation modes

Axial and Radial

Bending

Ovalization
Wrapped sensor response to a specific deformation mode

- Strain (%) vs. Phasing (degree)
- Curves for Axial compression, Bending, and Ovalization
- Phasing range from 0 to 360 degrees
- Strain range from -0.25% to 0.30%
3.2 Casing imaging system

<table>
<thead>
<tr>
<th>Deformation Mode</th>
<th>Pipe OD (inch)</th>
<th>Sensor Length (inch)</th>
<th>Wrapping Angle (degree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial Compression/Radial Expansion</td>
<td>4.5 (PVC)</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>Bending</td>
<td>4 (PVC)</td>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>6 (Steel)</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>Ovalization</td>
<td>6 (PVC)</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>6 (Steel)</td>
<td>3</td>
<td>35</td>
</tr>
</tbody>
</table>
Axial compression test set up
Bending test setup

\[\alpha/2 \]

\[R \]

\[r \]

\[L/2 \]
Ovalization test set up
PVC pipe axial strain results

Pipe axial strain

Time (min)
PVC pipe bending results

![Graph showing PVC pipe bending results with test numbers and half bending angles measured by sensors and theoretically calculated.](chart.png)
Observations from pipe testing

• A prototype of the distributed coaxial cable casing imager has been developed and tested on both PVC and steel pipes
• The casing imager has good performance in casing axial compression monitoring for strain up to 1%
• There is a good match between theoretical and measured bending angle for bending angle up to 4 degrees
• The measured pipe ovalization follows the theoretical curve for pipe ovality up to 3%
• Pipe original roundness and straightness has a strong influence on bending and ovalization results
• The pre-stressing and epoxy properties influenced measurements especially when deployed on the steel pipe
Outline

• Long term CO2 injection integrity monitoring – problem statement

• Main objective to demonstrate and develop a novel, robust, down hole sensing technology for in-situ monitoring

• To reach the objective we developed and verified the robust ceramic coaxial cable sensors at elevated temperature and pressure
 – Strain
 – Temperature
 – Pressure

• Evaluated a bench scale wellbore system

• Summary
Summary

• Distributed strain and temperature rigid coaxial sensors for down hole conditions have been developed and are verified at down-hole conditions

• The pressure sensor is developed and validated

• Distributed sensing concept using coaxial cable is proven

• A bench scale prototype with distributed coaxial cable sensors was wrapped with an angle to a pipe and replicated the imposed strain behaviour