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Outline

 Long term COZ2 injection integrity monitoring — problem statement

* Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

» To reach the objective we developed and verified the robust ceramic
coaxial cable sensors at elevated temperature and pressure

— Strain
— Temperature
— Pressure

« Evaluated a bench scale wellbore system

e Summary
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Potential leakage pathways of CO,

CO:z Injection Reactive Fault Abandoned Well

High K Zone

([

Juxtaposition %

e

F ¥

|
v

Earthquake

[ | Storageformation

[ 1 Caprock

[ | Permeable zone

[ 1 Upperlayer :

Natural fracture Shear fracture Hydraulicfracture

Matrix Structural Geomechanics
= Capillary entry pressure = Flow on faults = Hydraulic fracturing
= Seal permeability = Flow on fractures = Creation of shear fractures
= Pressure seals = Flow between permeable = Earth quake release

= High permeability zones zones due to juxtapositions
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Wellbore Leakage

PRIMARY

1. Incomplete annular cementing job,
doesn’t reach seal layer

2.  Lack of cement plug or permanent packer

3.  Failure of the casing by burst or collapse

4.  Poor bonding caused by mudcake

5.  Channeling in the cement

6. Primary permeability in cement sheath or
cement plug

SECONDARY

/. De-bonding due to tensile stress on casing-
cement-formation boundaries

8. Fractures in cement and formation

9.  Chemical dissolution and carbonation of
cement

10. Wear or corrosion of the casing
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Long term CO, Injection integrity monitoring
— problem statement

« Background:

— Subsurface geologic formations offer a potential location for long-
term storage of CO2.

— Achieve the goal to account for 99% of the injected CO2 requires
advanced monitoring technology to optimize the injection
processes and forecast the fate of the injected CO2

o Status:

— Due to the complexity, no single data type is sufficient by itself;
different monitoring and characterization approaches are deemed
to be necessary.

— In situ down-hole monitoring of state parameters (e.g., pressure,
temperature, etc.) provides critical and direct data points to validate
the models, optimize the injection scheme, detect leakage and
track the plume.

— Current down-hole sensors are insufficient to meet the reliability

and cost requirements.
| TSRS W RETIE—
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Outline

 Long term COZ2 injection integrity monitoring — problem statement

« Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

» To reach the objective we developed and verified the robust ceramic
coaxial cable sensors at elevated temperature and pressure

— Strain
— Temperature
— Pressure

« Evaluated a bench scale wellbore system

e Summary
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The goal is to develop a monitoring system combined
for the wellbore and the reservoir monitoring

Strain,

Temperature
o

Temperature,
Pressure

"N conmiiactratinn nrniart - \NNASP
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Distributed Coaxial-Cable Sensing
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Outline

 Long term COZ2 injection integrity monitoring — problem statement

* Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

 To reach the objective we developed and verified the robust ceramic
coaxial cable sensors at elevated temperature and pressure

— Strain
— Temperature
— Pressure

« Evaluated a bench scale wellbore system

e Summary
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CC-FPI Sensor Principle
Outer Conductor Reflectors
N\
x =y
—> rl\ FZ\

7-1 < <
/

= .
>| Dielectric Layer

S Inner Conductor I<
11

L

® Temperature sensing
— Dielectric thermal effect

— Thermal expansion

® Strain sensing
— Length elongation

5 (1+2N)c. 1 N=12 ..

o 4 [t~

f
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Outline

 Long term COZ2 injection integrity monitoring — problem statement

* Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

» To reach the objective we developed and verified the robust ceramic
coaxial cable sensors at elevated temperature and pressure

— Strain
— Temperature
— Pressure

« Evaluated a bench scale wellbore system

e Summary
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Distributed straln Sensors on a cantilever

* A cable with multiple FPIs is bonded on a cantilever

P
E A 1
< L
-------------- 1 )_l
—_ : 1
EM wave il’lput ﬁ_—l___|——_—
outout ! :
I 1
EM wave output J—JAQAA—
r————————— !
0.020 —
L N BTN )
§nms - 1 : i :_‘ ________ _’@“15
c | I , : i g
'ﬁu.am | “I -
: ) L) 1L .
& 0.005 L eyl g . g
{1 || | L - s
aoe 1 g g W ) Y g A
5 6 7) 4 g s 13 N
Time (ns) e

Gate/filter the reflectors Strain is related to spectrum shift
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Strain dlstrlbutlon on a cantilever

» Press one end and fix the other end

I
e
L

| p

]

0/0

Sensor position away from load (cm)

bending moment
M(x) =P(x—1L)
bending strain

_MZ
Sy

strain distribution of
nine sections on the
cantilever with three
end load
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Real time distributed strain monitoring

Bend at one end
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Beam shape strain sensor

e A pair of distributed strain sensors are implemented to
monitor strains at y and z direction

___________________________

I Dummy cable
, section
I

' | Vertical cable

: sensor \

Beam fixed end

—— e

_________________________

Horizontal "
cable sensor

Cables to VNA

_______

Beam free end e

Top sensor

Cables to terminator

Right side
sensor
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Dlsplacement Straln Transformation

e Displacement is an integral of distributed strain

yli] = %Zl: (i gtome> Ly

n=1 \m=1
(a ) @ Top sensor ESide sensor
0,003
&
0.0025 ¢
L
0.002
@
=
g 0.0015 d - L
v i sl
u ¢
0o
= @ Top Yiew Front Yiew
(=] 0.3 03 . . :

[ 02 {02
0.0005 i—. 0.1 / |16
[~ o 1 0

0.1 141
.+ : ’ ) y ) ’ 1 Y : ' 02 {02
4 5 & 7 ] 9 10

03 0.3
Sensor pos!tlnn t#] L] 0.2 04 05 0.8 1 o 0.2 04 0.6 0.8 1
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Coaxial cable torsion sensor

To rotary joint
andVNA :‘___..Reﬂectinns

P 2 2 2P P2 P P B Multiple-reflectors to form
;‘m:‘:cm . To terminator FP1S in one cable

Coaxial _~Ferrule .
Cable™ , The fixed reflectors are
| : Structure under torsion  fixed on the structure
i ______________________________________ . Hose clamp
The torsion is related
Al ;d with measured strain

2 2
NP Z(A(pJ:gnzy[%j
L d*+(pp) \ @ ¢
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A single torsion sensor test

Fix at on end, rotate
the other end

4.2
2198 8 1.83 M HZ/(ra d/m) A5 A 419 4N 4B 4%
Shaft under :
.~ Fixed end 4.196
Coaxial 1194
b
- To Terminator
I" T - 4192
| Feflectors =
1 a!_'id clamps |2 E 4.19
‘ 4 To VNA 4.188
1186
 Shaft fixed to stage
: : 1184
Rotation stage

o 50 10d 150 200 250 00
Rotation Stage Angle (degree)
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Dlstrlbuted torsmn sensor test

 The central sensor is under torque, while the other two is

relaxed TDTSiDn
Fixed applied
Sensor Sensor Sensor
section 1 ' section 2 n section 3
— - - =
w *U?— H-_"""--.._,_..--"”'Q?_ H
Section A Relaxed Relaxed Section D
section B section C

m

Increasing torque

Frequency Deviation (MHZ)

405 5 505 51 5.15 52 5.25 5.3
Freguency (GEHz] Sensor position

Torsion response in central sensor Torsion distribution of three sensors
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CCFPI Sensor de3|gh dvelopment

Drilling holes
/ ~
— Unstable
structure

— Package issue

® Crimp ferrule
— Easy fabrication

— No further
packaging needed
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CCFPI Strain Sensors

Outer Conductor ~ Squeezed copper crimp rings

EM wave input
_—

EM wave output

N N I S — 4
Inner Conductor Dielectric Layer

Strain sensor

Temperature cross talk Page 23
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CoaX|aI Cable Strain Sensor

e Strain sensor Is sensitive to temperature

‘

P Tor. )
My [ 5o g |ae- ({aCKH—aCTE)AT
fy 2 v 2,

<=7
M_Y_I H_J
Strain :' Temperature
Induced I Induced
O Hollow coaxial cable to mining'nize temperature cross-talk:
Orckx =0 i

\4

Dielectric Air 7avity

EM wave mpui t q v | Coax1a| Came FPI

EM wave output ﬂ Fh
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Stram Response

1.93
¥
1925 11.06 ppm/pue
S11 spectra
— N —O0mm \
N 192- A —0.05 mm
T ol
9 5% —020mm},
i ~ o%mm
= 19151 o ——0.35mm},
|+ odomm|
\\\‘\‘%ﬁ. ﬁ S N ggg mm [
—+—0.55mm
1.91 ~+ 0.60mm
s 19 191 192 193 194
freq(GHz)
1905 T I T 1 ]
0 200 400 600 800 1000
Strain (um)

Temperature cross talk is reduced to 20 ppm/°C, which is very close to the
theoretical minimum of 16.6 ppm/°C (limited by the CTE of copper)
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 Long term COZ2 injection integrity monitoring — problem statement

* Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

» To reach the objective we developed and verified the robust ceramic
coaxial cable sensors at elevated temperature and pressure

— Strain
— Temperature
— Pressure

« Evaluated a bench scale wellbore system

e Summary
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oaxial Cable Temperature Sensor
* Reflectors are generated by crimped copper rings

Outer Conductor ~ Squeezed copper crimp rings

EM wave input i coadd CableFP
EM wave output \ EFQ 552 Dal

\ /
Inner Conductor Dielectric Layer
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Temperature Response

4,882 "

4.88 -
4.878 -

50.22 ppm/°C

«10° S11 spectra

4.876 -

VA / —— 10
“‘ | —50
——— 60
70
——— 80
90
—— 100

— 110

4.874 -
4.872 -

freq(GHz)

4.87 -

484 485 486 487 488 489 49 491
freq(GH2)

4.868 -

4.866

4.864 - ‘ ‘ ‘ ‘ | | |
40 50 60 70 80 90 100 110
Temperature (C)
 Repeatable linear temperature response with
high sensitivity
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Temperature response
O Both materials and lengths will vary with temperature

Af o
N =( TZCK +0(CTEJAT

fN
Dielectric Physical
valley near4.8643GHz expansi on
4.882 - %
4.88- o
244 kHz/°C
4,878
__ 4876 . .
g 4574 o Test setup uniformity
B 4872 = — +1.9 °C @ 100°C
- 4.87 E§ . .
4868 = * Deviation of four tests
4.866 : — +3°C
4.864 | | | ST e T

40 50 60 70 80 90 100 110
x axial
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1.498

14975y

1.497+

freq(GH2z)

1.496+

1.4955+

1.495

1.4965+
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Temperature response

«10° Vvalley near1497374135.8405GHz

30 °C

100 °C

0 1000

2000 3000 4000
X axial

« Temperature sensitivity
— 18 ppm/°C

« CTE of copper
— 16.6 ppm/°C
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Pressure effects test set up

(a) VNA;

(b) pump;

(c) data
acquisition;

(d) HPHT cell;

(e) temperature
controller.
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40 °C

80 °C

Frequency Change (Hz)

Frequency Change (Hz)
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Pressure effect on Temperature sensor

STATISTICAL RESULTS

Source S.S. F Ratio Prob>F

Temp 8.7e+14 2100 <0.0001*

Pres 3.1e+14 751 <0.0001*
Temp*Pres 1.1e+13 28.9 <0.0001*
Temp*Temp 7.8e+12 19.0 <0.0007*

Pres*Pres 6.0e+12 14.5 <0.0019*
AF
=817 x 103 + 10.43 x 10° x <T _ 67'5> — 6.24 x 10° x (P _ 507'35) — 2.45 x 10°
42.5 492.65
T—67.5 P —507.4 T—67.5 T—67.5
><< 17c )x( 1977 )+1.86><106><( 17c )x( 17E >+1.62><106

o P —-507.4 o P—507.4
492.7 492.7

n 1 y - - i3 . 0y "
I e . st ORI,



U NI VYEWRZSESEITY

CLEMSON | - i “ . .J. ! g ""'f Ayt * : ; S m OF SCIENCE AND Sty

Modlfled temperature sensor
minimized pressure effect

STATISTICAL RESULTS
Source S.S. F Ratio Prob>F
Temp 3.23e+14 178 <0.0001*
Pres 7.52e+11 0.413 0.5307

Temp*Pres  4.85e+10 0.027 0.8727
Temp*Temp  1.15e+12 0.635 0.4390
Pres*Pres 3.78e+10 0.021 0.8874

AF = —6.262 X 10° — 6.362 x 10° x

(T—67.5)
42.5

IR o7 SR S i T L
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 Long term COZ2 injection integrity monitoring — problem statement

* Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

» To reach the objective we developed and verified the robust ceramic
coaxial cable sensors at elevated temperature and pressure

— Strain
— Temperature
— Pressure

« Evaluated a bench scale wellbore system

e Summary
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Microwave pressure sensor
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* Principle: reservoir and capillary for amplification similar

to the liquid in glass thermometer

Capillary

Reservoir

Liquid

T

N

Pressure-induced
deformation

AV.  pD
V., 4k

r

(5-4v)

The deformation is
manifested by liquid
column

AV,
_Ay,
(3

Al

\-—l

Capillary area
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Temperature cross-talk reductlon

e The pressure sensor is also sensitive to temperature
* Fill low CTE material to minimize liquid volume

Reservoir volume: :> Pressure sensitivity: the
Liquid the same same

iaui . Temperature
Low CTE Liquid volume :> p

reduced sensitivity: small
_ materia
”I‘\
wad,
Xtalk, oc ===
reservoir
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Liquid column interrogation

(N * Use microwave to measure the length of
v~ e the liquid column in capillary
~~~~ - Copper foil on surface of the tube

EM wave input
—— I,2 Air Liquid I,
EM wave output

O Microwave travels slower in liquid than air

O The electrical length between two reflectors is liquid column
dependent

Af AL
AL = AgAl —> — =T
/ \ Spectrum shift with electrical

Electrical length Liquid column length variation
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Pressure sensor test setup
J Ay
= —_ p
il : | % \
4 e ,t -
Capillary tube A B
portl _ port2 L
— Sensor under test
VNA
]
Testing chamber %%%%%
Glass rod N Pressure
3 : controller
Motor oil E Weight
SS Reservoir N&otor oil
, J Testing

| chamber

Dead weight
pressure tester

T P SR T AT AN R
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Pressure test results

e Sensitivity O Stability

—+— measurement #1

- —S— measurement #2 N
. N ~ 7 measurement #3 c=1.25 Psi
N ) R . = 2
T s 1 kHz/psi g
= -5 - =
= S
= S
= &
= —
) \ 5 |
a ::;io.l \\\ E -1
g \ 7
2 -107° \ -2
8 015 N &
= 3

" ey (1) "

Increasing pressure ‘ ‘ ‘ ‘
0 200 400 600 800
-15 ‘ ‘ ‘ ‘ Time (S)
0 500 1000 1500 2000

pressure (psi)

O Stable and repeatable
O Detection limit ~ 1 psi
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Outline

 Long term COZ2 injection integrity monitoring — problem statement

* Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

» To reach the objective we developed and verified the robust ceramic
coaxial cable sensors at elevated temperature and pressure

— Strain
— Temperature
— Pressure

 Evaluated a bench scale wellbore system

e Summary
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Proposed coaxia
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temperature sensor

strain sensor
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surface casing
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Casing deformation modes

i i> :l
I

Axial and Radial Bending Ovalization
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Wrapped sensor response to a specific
deformation mode

—AXial compression
-—Bending
——Qvalization

Phasing (degree)
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3.2 Casing imaging system

Deformation Mode Pipe OD Sensor Length Wrapping Angle

(inch) (inch) (degree)
Axial Compression/
Radial Expansion 4.5 (PVC) 4 23
4 (PVC) 3 55
Bending
6 (Steel) 3 35
6 (PVC) 3 35
Ovalization
6 (Steel) 3 35
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Bending test setup

o/2
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Ovalization test set up

CE-HOS WSd 3dId &8

A5y - 75 PSpCl  PEOE-O WISH
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PVC pipe axial strain results

1.20%
i
1.00% g
- °
0.80% R
[ ]
——
£ ¢
8 0.60% e
57 s o LVDT
— [J
2 Iy e Sensor
$ 0.40% e
Q SR
= [ ]
a °
0.20% -
[
Sncpey
0.00% “hapgs o
0 5 10 15 20 25 30 W35 40
-0.20% Time (min)
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2.5
o 2
g )
o °
Z
015
E’ [
© $
g o
s 1 °
S °
Q ®
(T
© ®
T 05 ® ® Sensor measured half bending angle
@ Theoretical half bending angle
0
0 1 2 3 4 5 6 7

Test number
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Observations from pipe testing

A prototype of the distributed coaxial cable casing imager has
been developed and tested on both PVC and steel pipes

The casing imager has good performance in casing axial
compression monitoring for strain up to 1%

There is a good match between theoretical and measured
bending angle for bending angle up to 4 degrees

The measured pipe ovalization follows the theoretical curve for
pipe ovality up to 3%

Pipe original roundness and straightness has a strong influence
on bending and ovalization results

The pre-stressing and epoxy properties influenced
measurements especially when deployed on the steel pipe
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Outline

 Long term COZ2 injection integrity monitoring — problem statement

* Main objective to demonstrate and develop a novel, robust, down hole
sensing technology for in-situ monitoring

» To reach the objective we developed and verified the robust ceramic
coaxial cable sensors at elevated temperature and pressure

— Strain
— Temperature
— Pressure

« Evaluated a bench scale wellbore system

e Summary
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Summary

 Distributed strain and temperature rigid coaxial sensors for
down hole conditions have been developed and are
verified at down-hole conditions

e The pressure sensor is developed and validated
« Distributed sensing concept using coaxial cable is proven

* A Dbench scale prototype with distributed coaxial cable
sensors was wrapped with an angle to a pipe and
replicated the imposed strain behaviour
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