

Computational Design and Discovery of Nibased Alloys and Coatings: *Thermodynamic Approaches Validated by Experiments*

DOE contract No.: DE-FE0024056 2016 Crosscutting Research & Rare Earth Elements Portfolios Review April 22, 2016 • Pittsburgh, PA

Bi-Cheng Zhou (Presenter), Austin Ross, Greta Lindwall, Xuan L. Liu, Zi-Kui Liu (PI)

Department of Materials Science and Engineering The Pennsylvania State University, University Park, PA 16802

Thomas Gheno, Brian Gleeson

Department of Mechanical Engineering and Materials Science University of Pittsburgh, Pittsburgh, PA 15261

Outline

- Background
- Project Objectives and Tasks
- Approach
- Progress
 - I. Thermodynamic modeling of Ni-Hf, Ni-AI-Hf, and Ni-Cr-Hf
 - II. Prediction of Hf tolerance in NiCrAl bond coat alloys
 - III. Preliminary results on the effect of Y
- Future work
- Acknowledgement

Alumina Scale Formation on Alloys

Extrinsic Al_2O_3 scale growth desired for the protection against high temperature corrosion

Gleeson, B. (2010). In Shreir's Corrosion (pp. 180-194). Elsevier.

PennState Effects of Reactive Elements (RE) on Alumina **Scale Formation on Alloys**

P.Y. Hou, "Impurity effects on alumina scale growth," J. Am. Ceram. Soc., 86 (2003) 660.

Oxygen Al_2O_3 scale growth is O_h^{2} dominated by grain-Al₂O₃ Scale boundary diffusion at the Al_{h}^{3+} Al_{1}^{3+} temperatures of interest Alloy Effects on Comparisons Inference Outward **k**_p Grain size transport RE reduces D_b^{Al} by 4x, Fe, Ni-based Down 2x Down 1.5-2x Down 4x has little effect on D_b^O with RE vs. Without RE = Hf, Y, Zr, La, ...

Single Doped : Hf vs. Y

Base composition (at.%): Ni-20Al-5Cr

-0.1Hf

Thermodynamic considerations of oxidation

3Hf + 2Al₂O₃ → 3HfO₂ + 4Al $\Delta G^{\circ} = -RT \times InK_{eq}$ and $K = \frac{a_{Al}^{4}}{a_{Hf}^{3}}$ In order to suppress HfO₂: must have K < K_{eq}

Large composition space of bond coat alloys: Ni-Al-Co-Cr-Si-Hf-Y Control the Hf activity a_{Hf} in the alloys is key!

Project Objectives

- Develop a thermodynamic database for accelerated design of Ni-base alloys and coatings: Ni-Al-Co-Cr-Si-Hf-Y
- Study effects of reactive elements on the phase stability and oxide scale formation of bond coat alloys: Hf and Y additions to Ni-systems
- Experimental verification of thermodynamic predictions
- Assist in the development of the automated thermodynamic modeling tool (ESPEI)

Modeling Approach - CALPHAD

Pure elements \rightarrow Binary \rightarrow Ternary \rightarrow Multi-component

First-principles methodology

- The CALPHAD framework requires data that is difficult to access with experimental work (stable & unstable phases)
- First-principles couples with CALPHAD Naturally!
- Density Functional Theory (DFT) is an efficient way to calculate the ground state energies of condensed matter systems

Efficient! Fewer calorimetric experiments, access metastable states 9 Shang et al. (2010) Computational Materials Science

Ni-Al-Cr-Co-Si-Hf-Y

Phase I

Ni-Al	Ni-Cr	Ni-Co	Ni-Si	Ni-Hf	Ni-Y	Al-Cr
Al-Co	Al-Si	Al-Hf	Al-Y	Cr-Co	Cr-Si	Cr-Hf
Cr-Y	Co-Si	Co-Hf	Co-Y	Si-Hf	Si-Y	Hf-Y

Ni-containing ternary systems

Prioritized systems to model for studying of the Hf and Y effect

Modeled, compatible descriptions No description available Modeled/Partly modeled

• CALPHAD 💻

self-consistency and the possibility to extrapolate to multicomponent systems

Challenge

Revisions of lower order systems

→ re-modeling of higher order systems

ESPEI

Extensible, Self-optimizing Phase Equilibrium Infrastructure

- Semi-automated model parameter optimization
- Statistical analysis of results
- Reusable storage of "raw" data for potential remodeling

Partly financed by DOE

- S. Shang, Y. Wang, Z-K. Liu Magnesium Technology (2010)
- www.materialsgenome.com

I. Thermodynamic modeling of Ni-Hf, Ni-Al-Hf, and Ni-Cr-Hf

Objectives

• Phase stabilities in base alloys: Al-Cr-Ni + Hf additions

Ni-Hf thermodynamic re-modeling

- Built upon the previous modeling work by Tao Wang et al. (2001) on Ni-Hf
- Remodeling with new data
- PSU {

 DFT data for B2 phase
 DFT data for intermetallic compounds
 DFT SQS data for fcc and bcc solid solution

 - Pitt { EPMA data for Hf solubility in Ni
 EPMA data for phase stability of compounds
 Optical microscopy, DSC and XRD data on B2
 - $Hf_{50}Ni_{50}$

Ni-Hf DFT calculations

Ni	Ni₅Hf	Ni ₇ Hf ₂	Ni ₃ Hf-L12	α- Ni₃Hf	Ni ₂₁ Hf ₈
Ni ₇ H ₃	Ni ₁₀ Hf ₇	X ₁ Hf ₁ -B33	NiHf-B2	X ₁ Hf ₂ -C16	BCC_A2
Hf					

Previous modeling from Tao Wang et al. (2001) Z. Metallkd. 92 (2001) 5

Ni-Hf: thermodynamics

Ni-Hf: fcc phase

Ni-Hf: bcc phase

Calculated Hf solubility in fcc Ni

Calculated Ni-Hf phase diagram

New cast alloys - Ternaries

Micrographs, 1100 °C

Al-Hf-Ni

New cast alloys - Ternaries

PennState

Ni₇Hf₂ new sublattice model to include AI solubility

Compound	Prototype Structure	Space Group
Ni ₇ Hf ₂	Zr ₂ Ni ₇	C2/m

New Sublattice Model
(Hf,Ni) ₂ (Al,Ni) ₇
Al, Ni Interaction parameter
from experiments

No	Atom	Multiplicity	Wyckoff
1	Ni	8	j
2	Ni	8	j
3	Ni	8	j
4	Hf	4	i
5	Ni	4	i
6	Hf	4	i

Assumption: all Al goes into the Ni site DFT endmembers: (Hf)₂(Ni)₇, (Hf)₂(Al)₇,(Ni)₂(Ni)₇, (Ni)₂(Al)₇

Calculated AI solubility in Ni₇Hf₂

Phase compositions in NiCrAl-Hf alloys

○□△ ExperimentsCurrent thermodynamic modeling

II. Prediction of Hf tolerance in NiCrAl bond coat alloys

Thermodynamic considerations of oxidation

3Hf + 2Al₂O₃ → 3HfO₂ + 4Al $\Delta G^{\circ} = -RT \times InK_{eq}$ and $K = \frac{a_{Al}^{4}}{a_{Hf}^{3}}$ In order to suppress HfO₂: must have K < K_{eq}

Large composition space of bond coat alloys: Ni-Al-Co-Cr-Si-Hf-Y Control the Hf activity a_{Hf} in the alloys is key!

Oxidation of NiCrAI-Hf alloys

Determination of whether Hf oxidized or not

• No Hf oxidation (traces present in middle of scale probably left from transient stage)

• Localized Hf oxidation (this is a subjective call)

Hf oxidation

Oxidation of NiCrAl-Hf alloys

Note: all three alloys contained 0.1 at. % Hf

1200 °C

 Effect of temperature: tolerance reduced (larger driving force for HfO₂ formation) with increasing temperature

1200 °C

less zones with no oxidation

1100 °C

• Effect of **Hf** (more Hf promotes HfO2 formation)

HQ10: Ni-8Cr-17Al-**0.05Hf**

HQ8: Ni-8Cr-17Al-**0.1Hf**

Effect of Cr (prediction: Hf tolerance decreases when Cr increases)

HQ9: Ni-**13Cr**-17Al-0.1Hf

III. Preliminary results on the effect of Y

Ternary Assessments of Y-containing systems in Literature

Base	Al-Co-Cr	Al-Co-Ni	Al-Cr-Ni	Co-Cr-Ni		
X ₁ -X ₂ -Y	AI-Co-Y	Al-Cr-Y	AI-Ni-Y	Co-Cr-Y	Co-Ni-Y	Cr-Ni-Y
X ₁ - X ₂ -Hf	Al-Co-Hf	AI-Cr-Hf	Al-Ni-Hf	Co-Cr-Hf	Co-Ni-Hf	Cr-Ni-Hf
X ₁ -X ₂ -Si	Al-Co-Si	Al-Cr-Si	AI-Ni-Si	Co-Cr-Si	Co-Ni-Si	Cr-Ni-Si
X₁-Hf-Y	AI-Hf-Y	Co-Hf-Y	Cr-Hf-Y	Ni-Hf-Y		
X ₁ -Hf-Si	Al-Hf-Si	Co-Hf-Si	Cr-Hf-Si	Ni-Hf-Si		
X ₁ -Si-Y	AI-Si-Y	Co-Si-Y	Cr-Si-Y	Ni-Si-Y		
Additions	Hf-Si-Y					
		•				

Assessment available

Assessment under investigation

Good from binaries

Du, Z., & Lü, D. (2005). Thermodynamic modeling of the **Co–Ni–Y** system. *Intermetallics*, *13*(6), 586–595.

Y Solubility in Ni

Interactions in the fcc phase from Huang et al. (2015).

More work needs to be done to determine the Ni-Y interaction in fcc phase.

Huang, J., Yang, B., Chen, H., & Wang, H. (2015). *Journal of Phase Equilibria and Diffusion*, *36*(4), 357–365.

Beaudry, B. J., Haefling, J. F., & Daane, A. H. (1960). Acta Crystallographica, 13(9), 743–

744.

PennState

Stability of Y₂O₃

Hf tolerance concept not present: Y_2O_3 always more stable at low P_{O2}

Oxidation of Ni-Al-Cr-Y Alloys at 1200 °C: possible correlation between oxide scale formation and yitrrides formation

Future Works in Phase II

- Continue to investigate the Y and Si effects on oxide scale formation in Phase II
- Study the <u>Hf+Y co-doping</u> effects on oxide scale
- Planned publications so far:
 - 1. Hf-Ni Binary thermodynamic modeling
 - 2. AI-Hf-Ni, Cr-Hf-Ni Ternaries thermodynamic modeling
 - 3. AI-Cr-Hf-Ni prediction + Oxidation experiments
- The further development of ESPEI for automation of thermodynamic modeling

- Project manager: Jason Hissam
- Funding from DOE-NETL: DE-FE0024056
- High performance computing resources on XSEDE, NERSC and the LION-X and CyberStar clusters at Penn State

Extreme Science and Engineering Discovery Environment

Thank you for your attention. Any questions?