Computational Design and Discovery of Ni-based Alloys and Coatings: Thermodynamic Approaches Validated by Experiments

DOE contract No.: DE-FE0024056
2016 Crosscutting Research & Rare Earth Elements Portfolios Review
April 22, 2016 • Pittsburgh, PA

Bi-Cheng Zhou (Presenter), Austin Ross, Greta Lindwall, Xuan L. Liu, Zi-Kui Liu (PI)
Department of Materials Science and Engineering
The Pennsylvania State University, University Park, PA 16802

Thomas Gheno, Brian Gleeson
Department of Mechanical Engineering and Materials Science
University of Pittsburgh, Pittsburgh, PA 15261
Outline

• Background
• Project Objectives and Tasks
• Approach
• Progress
 I. Thermodynamic modeling of Ni-Hf, Ni-Al-Hf, and Ni-Cr-Hf
 II. Prediction of Hf tolerance in NiCrAl bond coat alloys
 III. Preliminary results on the effect of Y
• Future work
• Acknowledgement
Extrinsic Al_2O_3 scale growth desired for the protection against high temperature corrosion

Effects of Reactive Elements (RE) on Alumina Scale Formation on Alloys

Al₂O₃ scale growth is dominated by grain-boundary diffusion at the temperatures of interest

![Diagram showing Al₂O₃ scale formation and the effects of RE](image)

<table>
<thead>
<tr>
<th>Comparisons</th>
<th>Effects on</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_p</td>
<td>Grain size</td>
<td>Outward transport</td>
</tr>
<tr>
<td>Fe, Ni-based with RE vs. Without</td>
<td>Down 2x</td>
<td>Down 1.5-2x</td>
</tr>
</tbody>
</table>

RE reduces D_{b}^{Al} by 4x, has little effect on D_{b}^{O}

RE = Hf, Y, Zr, La, ...
Isothermal Oxidation Kinetics at 1150°C

Single Doped: Hf vs. Y

Base composition (at.%): Ni-20Al-5Cr

![Graph showing weight change vs. oxidation time for different dopants at 1150°C.](image)

- Ni-20Al-5Cr base
- -0.05Y
- -0.1Y
- -0.05Hf
- -0.1Hf

![Micrographs of oxidized materials.](image)
Thermodynamic considerations of oxidation

3Hf + 2Al₂O₃ → 3HfO₂ + 4Al

\[\Delta G^\circ = -RT \times \ln K_{eq} \] and

\[K = \frac{a_{Al}^4}{a_{Hf}^3} \]

In order to suppress HfO₂:

must have \(K < K_{eq} \)

Large composition space of bond coat alloys: Ni-Al-Co-Cr-Si-Hf-Y

Control the Hf activity \(a_{Hf} \) in the alloys is key!
Project Objectives

• Develop a thermodynamic database for accelerated design of Ni-base alloys and coatings: Ni-Al-Co-Cr-Si-Hf-Y

• Study effects of reactive elements on the phase stability and oxide scale formation of bond coat alloys: Hf and Y additions to Ni-systems

• Experimental verification of thermodynamic predictions

• Assist in the development of the automated thermodynamic modeling tool (ESPEI)
Modeling Approach - CALPHAD

Thermochemical data: enthalpy, entropy, heat capacity, activity…

Phase equilibria data: liquidus, solidus, phase boundary/composition

Fewer data points supplemented by first-principles calculations

Experimental data plenty, hard to predict using first-principles

http://www.calphad.org

Gibbs energy (parameterized)

Phase diagrams, direct applications

Pure elements → Binary → Ternary → Multi-component

Practical applications
First-principles methodology

- The CALPHAD framework requires data that is difficult to access with experimental work (stable & unstable phases)
- **First-principles couples with CALPHAD Naturally!**
- **Density Functional Theory (DFT)** is an efficient way to calculate the ground state energies of condensed matter systems

Input

- approximates interactions within the crystalline lattice for calculations

Output

- Properties:
 - Ground state energy of a lattice
 - Total energies of different states
 - Finite temperature properties

Efficient! Fewer calorimetric experiments, access metastable states

Shang et al. (2010) *Computational Materials Science*
Ni-Al-Cr-Co-Si-Hf-Y

Phase I

<table>
<thead>
<tr>
<th>Ni-Al</th>
<th>Ni-Cr</th>
<th>Ni-Co</th>
<th>Ni-Si</th>
<th>Ni-Hf</th>
<th>Ni-Y</th>
<th>Al-Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Co</td>
<td>Al-Si</td>
<td>Al-Hf</td>
<td>Al-Y</td>
<td>Cr-Co</td>
<td>Cr-Si</td>
<td>Cr-Hf</td>
</tr>
<tr>
<td>Cr-Y</td>
<td>Co-Si</td>
<td>Co-Hf</td>
<td>Co-Y</td>
<td>Si-Hf</td>
<td>Si-Y</td>
<td>Hf-Y</td>
</tr>
</tbody>
</table>

Ni-containing ternary systems

<table>
<thead>
<tr>
<th>Ni-Al-Cr</th>
<th>Ni-Al-Co</th>
<th>Ni-Al-Si</th>
<th>Ni-Al-Hf</th>
<th>Ni-Al-Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-Cr-Co</td>
<td>Ni-Cr-Si</td>
<td>Ni-Cr-Hf</td>
<td>Ni-Cr-Y</td>
<td></td>
</tr>
<tr>
<td>Ni-Co-Si</td>
<td>Ni-Co-Hf</td>
<td>Ni-Co-Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-Si-Hf</td>
<td>Ni-Si-Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-Hf-Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prioritized systems to model for studying of the Hf and Y effect

Modeled, compatible descriptions No description available Modeled/Partly modeled
• CALPHAD → self-consistency and the possibility to extrapolate to multicomponent systems

ESPEI
Extensible, Self-optimizing Phase Equilibrium Infrastructure

- Semi-automated model parameter optimization
- Statistical analysis of results
- Reusable storage of “raw” data for potential remodeling

Challenge
Revisions of lower order systems → re-modeling of higher order systems

Partly financed by DOE

- S. Shang, Y. Wang, Z-K. Liu
 Magnesium Technology (2010)
- www.materialsgenome.com
I. Thermodynamic modeling of Ni-Hf, Ni-Al-Hf, and Ni-Cr-Hf
Objectives

- Phase stabilities in base alloys: Al-Cr-Ni + Hf additions

![Diagram showing phase stabilities in base alloys: Al-Cr, Al-Hf, Al-Ni, Cr-Hf, Cr-Ni, Hf-Ni, Al-Cr-Hf, Al-Cr-Ni, Al-Hf-Ni, Cr-Hf-Ni, Al-Cr-Hf-Ni.]

Literature

DFT

N/A
Ni-Hf thermodynamic re-modeling

• Built upon the previous modeling work by Tao Wang et al. (2001) on Ni-Hf
• Remodeling with new data
 • DFT data for B2 phase
 • DFT data for intermetallic compounds
 • DFT SQS data for fcc and bcc solid solution
 PSU
• EPMA data for Hf solubility in Ni
• EPMA data for phase stability of compounds
• Optical microscopy, DSC and XRD data on B2 Hf$_{50}$Ni$_{50}$
 Pitt
Ni-Hf DFT calculations

<table>
<thead>
<tr>
<th></th>
<th>Ni</th>
<th>Ni$_3$Hf</th>
<th>Ni$_7$Hf$_2$</th>
<th>Ni$_3$Hf-L12</th>
<th>α-Ni$_3$Hf</th>
<th>Ni$_{21}$Hf$_8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$_7$H$_3$</td>
<td>Ni$_{10}$Hf$_7$</td>
<td>X$_1$Hf$_1$-B33</td>
<td>NiHf-B2</td>
<td>X$_1$Hf$_2$-C16</td>
<td>BCC_A2</td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finite Temperature DFT

0K DFT

No DFT

Experimental Data:
- ▲ Yeremenko et al. [6]
- ✗ Svechnikov et. al. [4]
- ▼ Selhaoui et al. [10]
- + Present Work

Previous modeling from Tao Wang et al. (2001) Z. Metallkd. 92 (2001) 5
Ni-Hf: thermodynamics

Enthalpy of Formation, J/mol-atom

- Selhaoui, calorimetry
- Bencze, KEMS
- Guo, calorimetry
- Levy, DFT

Mole Fraction Hf

Activity

T=1423.15 K

DFT – HfNi₃, HfNi on convex hull

T=1418.15 K

Bencze & Hilpert (1996) - Knudsen cell effusion mass spectrometry
Ni-Hf: fcc phase

Enthalpy of Mixing, J/mol vs Mole Fraction Hf

- DFT (○)
- DFT-SQS (●)

Temperature [K] vs Mole Fraction Hf

- fcc+γ'

DATABASE: User data 2015. 4.22
N=1, P=1E5
Ni-Hf: bcc phase

Enthalpy of Mixing, J/mol-atom

Mole Fraction Hf

Temperature [K]

Mole Fraction Hf

bcc-A2

DFT (○)

DFT-SQS (●)

B2

B2+bcc-A2

bcc-A2

B2
Calculated Hf solubility in fcc Ni

- **Present work**
- **Hajjaji**
- **Reinbach**
- **Wang**
- **Svechnikov**

Previous modeling in the literature

Current modeling
Calculated Ni-Hf phase diagram

Temperature [K]

Mole Fraction Hf

Liquid

B2

fcc

hcp

Liquid

HfNi

HfNi

HfNi
New cast alloys - Ternaries

Micrographs, 1100 °C

Al-Hf-Ni

Cr-Hf-Ni
New cast alloys - Ternaries

Al-Hf-Ni

Cr-Hf-Ni

Model solubility of Ni_7Hf_2
Ni$_7$Hf$_2$ new sublattice model to include Al solubility

<table>
<thead>
<tr>
<th>Compound</th>
<th>Prototype Structure</th>
<th>Space Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$_7$Hf$_2$</td>
<td>Zr$_2$Ni$_7$</td>
<td>C2/m</td>
</tr>
</tbody>
</table>

New Sublattice Model
(Hf,Ni)$_2$(Al,Ni)$_7$

Assumption: all Al goes into the Ni site
DFT endmembers:
(Hf)$_2$(Ni)$_7$, (Hf)$_2$(Al)$_7$, (Ni)$_2$(Ni)$_7$, (Ni)$_2$(Al)$_7$

Al,Ni Interaction parameter from experiments
Calculated Al solubility in Ni$_7$Hf$_2$

Considering Al solubility in Hf$_2$Ni$_7$

Experimental tie-triangle

Not considering

T = 1100 °C
Phase compositions in NiCrAl-Hf alloys

- γ
- γ'

Experiments

Current thermodynamic modeling
II. Prediction of Hf tolerance in NiCrAl bond coat alloys
Thermodynamic considerations of oxidation

3Hf + 2Al₂O₃ → 3HfO₂ + 4Al

ΔG⁰ = -RT × lnKₑq and K = \(\frac{a_{Al}^4}{a_{Hf}^3} \)

In order to suppress HfO₂:
must have K < Kₑq

Large composition space of bond coat alloys: Ni-Al-Co-Cr-Si-Hf-Y
Control the Hf activity \(a_{Hf} \) in the alloys is key!
Oxidation of NiCrAl-Hf alloys

Three Ni-Al-Cr + 0.1 at. % Hf alloys

Predicted HfO$_2$ formation “boundary” at 1000 °C

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Phase Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 °C</td>
<td>γ-γ'</td>
</tr>
<tr>
<td>1100 °C</td>
<td>γ-γ'</td>
</tr>
<tr>
<td>1200 °C</td>
<td>γ</td>
</tr>
</tbody>
</table>

Calculated Al-Cr-Ni isothermal section

- γ
- γ'
- γ + γ'
- B2 + γ'
- B2 + γ + γ'
- B2 + γ

Hf content for HfO$_2$ formation, at.%

- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6

Cr concentration, at.%

- 0
- 5
- 10
- 15
- 20
- 25
- 30

Mole Fraction Al

- 0.05
- 0.1
- 0.15
- 0.2
- 0.25
- 0.3
- 0.35
- 0.4
- 0.45
- 0.5

Mole Fraction Cr

- 0
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
Determination of whether Hf oxidized or not

- No Hf oxidation (traces present in middle of scale probably left from transient stage)

- Localized Hf oxidation (this is a subjective call)

- Hf oxidation
Oxidation of NiCrAl-Hf alloys

Note: all three alloys contained 0.1 at. % Hf

Predicted HfO₂ formation “boundary” at 1200 °C

1200 °C

Hf content for HfO₂ formation, at.%

0.6
0.5
0.4
0.3
0.2
0.1
0

Cr concentration, at.%

0 5 10 15 20 25 30

- γ
- γ′
- γ + γ′
- B2 + γ′
- B2 + γ + γ′
- B2 + γ

7.5Cr-13Al

7.5Cr-17Al

13Cr-17Al

HfO₂ pegs

10 µm
• Effect of **temperature**: tolerance reduced (larger driving force for HfO$_2$ formation) with increasing temperature

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Temperature 1</th>
<th>Temperature 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ8</td>
<td>1100 °C</td>
<td>1200 °C</td>
</tr>
<tr>
<td>HQ9</td>
<td>1000 °C</td>
<td>1100 °C</td>
</tr>
</tbody>
</table>

Less zones with no oxidation
• Effect of Hf (more Hf promotes HfO2 formation)

HQ10: Ni-8Cr-17Al-0.05Hf

HQ8: Ni-8Cr-17Al-0.1Hf

1000 °C

1100 °C

1200 °C
- Effect of Cr (prediction: Hf tolerance decreases when Cr increases)

HQ8: Ni-8Cr-17Al-0.1Hf

HQ9: Ni-13Cr-17Al-0.1Hf
III. Preliminary results on the effect of Y
Ternary Assessments of Y-containing systems in Literature

<table>
<thead>
<tr>
<th>Base</th>
<th>Al-Co-Cr</th>
<th>Al-Co-Ni</th>
<th>Al-Cr-Ni</th>
<th>Co-Cr-Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_1)-(X_2)-Y</td>
<td>Al-Co-Y</td>
<td>Al-Cr-Y</td>
<td>Al-Ni-Y</td>
<td>Co-Cr-Y</td>
</tr>
<tr>
<td>(X_1)-(X_2)-Hf</td>
<td>Al-Co-Hf</td>
<td>Al-Cr-Hf</td>
<td>Al-Ni-Hf</td>
<td>Co-Cr-Hf</td>
</tr>
<tr>
<td>(X_1)-(X_2)-Si</td>
<td>Al-Co-Si</td>
<td>Al-Cr-Si</td>
<td>Al-Ni-Si</td>
<td>Co-Cr-Si</td>
</tr>
<tr>
<td>(X_1)-Hf-Y</td>
<td>Al-Hf-Y</td>
<td>Co-Hf-Y</td>
<td>Cr-Hf-Y</td>
<td>Ni-Hf-Y</td>
</tr>
<tr>
<td>(X_1)-Hf-Si</td>
<td>Al-Hf-Si</td>
<td>Co-Hf-Si</td>
<td>Cr-Hf-Si</td>
<td>Ni-Hf-Si</td>
</tr>
<tr>
<td>(X_1)-Si-Y</td>
<td>Al-Si-Y</td>
<td>Co-Si-Y</td>
<td>Cr-Si-Y</td>
<td>Ni-Si-Y</td>
</tr>
</tbody>
</table>

| Additions | Hf-Si-Y |

- **Assessment available**: Good from binaries
- **Assessment not found**: Assessment under investigation
Y Solubility in Ni

Interactions in the fcc phase from Huang et al. (2015).

More work needs to be done to determine the Ni-Y interaction in fcc phase.

Stability of Y_2O_3

Hf tolerance concept not present: Y_2O_3 always more stable at low P_{O2}
Oxidation of Ni-Al-Cr-Y Alloys at 1200 °C: possible correlation between oxide scale formation and yittrides formation

Yittrides tolerance curves

Future Works in Phase II

• Continue to investigate the Y and Si effects on oxide scale formation in Phase II
• Study the \textit{Hf+Y co-doping} effects on oxide scale
• Planned publications so far:
 1. Hf-Ni Binary thermodynamic modeling
 2. Al-Hf-Ni, Cr-Hf-Ni Ternaries thermodynamic modeling
 3. Al-Cr-Hf-Ni prediction + Oxidation experiments
• The further development of ESPEI for automation of thermodynamic modeling
Acknowledgements

• Project manager: Jason Hissam
• Funding from DOE-NETL: DE-FE0024056
• High performance computing resources on XSEDE, NERSC and the LION-X and CyberStar clusters at Penn State

Thank you for your attention.
Any questions?