New Mechanistic Models of Long Term Evolution of Microstructure and Mechanical Properties of Nickel Based Alloys

Jay Kruzic, Matt Evans (OSU)
Alex Greaney (UCR)
Acknowledgments

- Postdoctoral researchers:
 - Dr. Qin Yu
 - Dr. Agnieszka Truszkowska

- Collaborators
 - Dr. Jeff Hawk (NETL, Albany)
 - Dr. Kyle Rozman (NETL, Albany)

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number(s) DE-FE0024065.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
• Current approaches to predicting creep and creep-fatigue behavior are highly empirical

 – Power law creep constitutive laws
 • e.g., Norton Law

 – Linear creep-fatigue damage accumulation

• Not easily extendible outside measured ranges

 – Longer lifetimes
 – Variable operating conditions

\[\varepsilon = A t \sigma^n \exp \left(\frac{-Q}{RT} \right) \]

\[\sum_j \left(\frac{n}{N_d} \right)_j + \sum_k \left(\frac{\Delta t}{T_d} \right)_k \leq D \]
Background & Motivation

• Review article by Pineau and Antolovich (2009):
 – Generalized approaches to lifetime prediction likely not successful
 – Suggest inclusion of critical damage mechanisms into material and service condition specific models

• Challenge
 – Difficult to include stochastic damage mechanisms in current modeling methods (e.g., FEM) in predictive manner

Rodriguez & Rao (1993)
Discrete Element Method (DEM)

- Discrete element method widely used for granular media
 - Each particle is modeled as a discrete element
 - One-to-one correlation between element and particle
 - Sands, mined materials, and powders are commonly modeled

- Properties modeled include:
 - Granular body deformation
 - Granular body creep
 - Granular sintering and microstructure evolution

- Stochastic phenomena naturally emerge in DEM
 - Shear bands
 - Fracture nucleation and propagation
 - Void formation and growth

Zhao & Evans (2011)
Adapting DEM for modeling solids

- Traditional DEM
 - Granular materials
 - Significant motion of discrete elements
 - Compression loading is straightforward

- Solid material DEM
 - Bond elements using parallel solid bonds
 - Full range of loading configurations can be simulated (tension, bending, etc.)

Now an element is meso-scale domain

Oregon sand dunes

Cai et al. (2014)
Adapting DEM for modeling solids

- Solid materials DEM has been used for:
 - Amorphous materials (silica glass, polymers)
 - Particle reinforced composites

- No need to predefine crack location/path
 - Emerge naturally from DEM model

FEM Model:
No crack branching predicted

DEM Model:
Crack branching matches experiment

DEM Model:
Cone crack emerges under indent in silica glass

Hedjazi et al. (2012)

Jebahi et al. (2013)
Adapting DEM for modeling solids

DEM started like this:

- Oregon sand dunes

Next we want to model this:

- Turbine blisk
Our approach

- DEM crystal plasticity model for predicting creep and creep-fatigue of nickel based alloys

- An element is a meso-scale domain
 - e.g., a sub-grain or part of sub-grain

Macroscopic grain structure undergoing creep

Grains composed of discrete elements on scale of substructure

Contacts between grains modeled with springs and series dashpots
Hypothesis

- We propose we can adapt DEM to correctly capture:
 - Polycrystal deformation
 - Microstructure evolution
 - Stochastic damage evolution
Developing the DEM model

Implement cubic crystal anisotropy

Implement plastic deformation

Implement creep deformation

Construct metal polycrystal model

Implement isotropic continuum
Material Selection

• Nimonic 75 chosen as model alloy
 – Simple Ni-20Cr solid solution microstructure represents many superalloys
 • Austenitic, solid solution grains
 • Chromium rich, globular grain-boundary carbides normally of the type $M_{23}C_6$
 – Certified tensile and creep reference material
 • We purchased a standardized microstructure certified to have specific tensile and creep properties
 – Model will be developed for 600°C deformation
 • Creep behavior certified at 600°C
Adapting DEM for elastic anisotropy

But Sand is not homogeneously elastic!

Intrinsic heterogeneous: force chains and jamming in granular materials (Image Banigan)

Particle Assembly

Oregon sand dunes

Normal Stiffness

Shear Stiffness

\[k_n \]

\[k_s \]

http://www.ngi.no/
We must developing contact behaviors to make sand elastic.

Homogeneous and isotropic in elastic response.
More than that we must make sand anisotropic elastic!

Ni-Cr: homogeneously elastic, but anisotropically elastic

We must define particle interactions k_n and k_s to produce full stiffness tensor

$$C_{ij} = \begin{pmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{44} \end{pmatrix}$$
Adapting DEM for elastic anisotropy

The subtleties of anisotropic elasticity...

• Directionally dependent elastic response of single crystal Ni
Adapting DEM for elastic anisotropy

Derive a set of contact interactions that produce this angular response.

- Directionally dependent normal stiffness
- Shear stiffness in stiff direction
- Shear stiffness in soft direction
- Stiff and soft shear stiffness overlaid
Adapting DEM for elastic anisotropy

Derive a set of contact interactions that produce this angular response.

Two different approaches to defining angularly dependent contact stiffness $k_n(\theta, \Phi)$ and $k_s(\theta, \Phi)$...

Emergent
- Simple form of $k_n(\theta, \Phi)$ and $k_s(\theta, \Phi)$
- Correct cubic symmetry
- Cubic elasticity emerges from collections of particles

Imposed
- More complex form of $k_n(\theta, \Phi)$ and $k_s(\theta, \Phi)$
- Correct cubic symmetry
- Each contact mimics cubic elasticity

We have developed both approaches
Define a local coordinate system

- Shear force
- In plane polar direction
- In plane equatorial direction
- Contact plane
- Contact normal direction

Formula: F_s
Adapting DEM for elastic anisotropy

Define bond contact laws based on coordinate system

\[K(\theta, \phi) = \frac{1}{2\pi} R_c C_{11}^* \begin{bmatrix} A & F & E \\ F & B & D \\ E & D & C \end{bmatrix} \]

\[\alpha = \frac{2C_{44}^*}{C_{11}^* - C_{12}^*} \]

\[\beta = \frac{C_{44}^*}{C_{11}^*} \]

\[A = \frac{(-\alpha - 1)\beta (8\sin^4(\theta)\cos(4\phi) + 4\cos(2\theta) + 7\cos(4\theta)) + 11(\alpha - 1)\beta + 16\alpha}{16\alpha} \]

\[B = \frac{\beta (-8(\alpha - 1)\sin^2(\theta)\cos^2(\theta)\cos(4\phi) + 7(\alpha - 1)\cos(4\theta) + 9\alpha + 7)}{16\alpha} \]

\[C = \frac{\beta (2(\alpha - 1)\sin^2(\theta)\cos(4\phi) + (\alpha - 1)\cos(2\theta) + 3\alpha + 1)}{4\alpha} \]

\[D = \frac{(\alpha - 1)\beta \sin^2(\theta)\cos(\theta)\sin(4\phi)}{2\alpha} \]

\[E = -\frac{(\alpha - 1)\beta \sin^3(\theta)\sin(4\phi)}{2\alpha} \]

\[F = \frac{(\alpha - 1)\beta \left(8\sin^3(\theta)\cos(\theta)\cos(4\phi) - 2\sin(2\theta) - 7\sin(4\theta)\right)}{16\alpha} \]
Adapting DEM for elastic anisotropy

- Optimization routine is used to find bond property constants α, β, C^*_{11} that give desired assembly response:

$$K(\theta, \phi) = \frac{1}{2\pi R c} C^*_{11} \begin{bmatrix} A & F & E \\ F & B & D \\ E & D & C \end{bmatrix}$$

$$\alpha = \frac{2C^*_{44}}{C^*_{11} - C^*_{12}}$$

$$\beta = \frac{C^*_{44}}{C^*_{11}}$$
Adapting DEM for elastic anisotropy

• Progress to date:

<table>
<thead>
<tr>
<th></th>
<th>C_{11} (GPa)</th>
<th>C_{12} (GPa)</th>
<th>C_{44} (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Model</td>
<td>237</td>
<td>77</td>
<td>73</td>
</tr>
<tr>
<td>Ni</td>
<td>251</td>
<td>150</td>
<td>124</td>
</tr>
<tr>
<td>Ni (600°C)</td>
<td>221</td>
<td>145</td>
<td>102</td>
</tr>
<tr>
<td>Fe</td>
<td>231</td>
<td>116</td>
<td>135</td>
</tr>
<tr>
<td>Cr</td>
<td>340</td>
<td>99</td>
<td>59</td>
</tr>
<tr>
<td>Si</td>
<td>166</td>
<td>80</td>
<td>64</td>
</tr>
</tbody>
</table>

C_{11} in line with Ni-alloys

C_{12} and C_{44} in line with Si
Developing the DEM model

- Implement cubic crystal anisotropy
- Implement plastic deformation
- Implement creep deformation
- Construct metal polycrystal model
- Implement isotropic continuum
Plastic behavior of Ni-20Cr

- Critical resolved shear stress has a minimum plateau above ~500 K
- Literature data is being used to define parallel bond shear strengths in DEM model

Various Ni-Cr alloys

(Akhtar & Teghtsoo, 1971)
Plastic behavior of Nimonic 75

- Tensile testing underway on Nimonic 75
 - Determine hardening behavior at 600°C
 - Determine dynamic softening during stress relaxation at 600°C
Adapting DEM for plasticity

• Parallel bonded discrete elements:
 – Consider as meso-scale domains
 – Potential sub-grains

Potential Bond Breaking Phenomena

Normal stretch Shear stretch Tilt stretch Twist stretch
Adapting DEM for plasticity

Typical deformations:
- Normal stretch
- Shear stretch
- Tilt stretch
- Twist stretch

Corresponding physical phenomena:
- Crack or void formation
- Plastic slip
- Tilt boundary formation
- Twist boundary formation
- Sub-grain evolution
Adapting DEM for plasticity

- Non-hardening deformation
 - perfect plasticity
 - shear localization evolves

![Graph showing stress vs. strain]
Adapting DEM for plasticity

- Hardening deformation
 - Strain hardening
 - Localization suppressed
Adapting DEM for plasticity

- Elastic and plastic models are coupled.

- At right:
 - No bond hardening in this model.
 - Artificial hardening emerges from different elastic model.
 - Bond texture evolves into stiffer configuration.
 - Shear localization emerges.
 - Bond stressed, breaks, and forms in stiffer orientation.
 - Bond texture evolves.

Graph showing stress vs. strain with annotations.

- Stress (MPa) axis ranging from 0 to 70.
- Strain (%) axis ranging from 0 to 0.4.
- Blue line and dots representing stress-strain behavior.
- Arrows indicating bond stress, breakage, and formation in stiffer orientation.
- Text annotations for shear localization and bond texture evolution.
Creating a DEM Polycrystal

- EBSD used to quantify grain structure
 - Presence of twins skews apparent distributions
 - $\Sigma 3$ and $\Sigma 9$ annealing twin boundaries are unlikely damage sites (Zhang & Field, 2013)
 - Initially a twin-free microstructure is created for our DEM model
Creating a DEM Polycrystal

- A 3-D Voronoi algorithm for crystal plasticity has been adapted for making a polycrystalline DEM assembly

- Assembly captures essential grain size/shape statistics

- Microstructure also being measured in steady state creep regime
 - Steady state microstructure will be used for model

creep samples tested at NETL
Conclusions

• An anisotropic elasticity formulation can be developed to mimic cubic anisotropy
 – We will tweak formulation to access the exact desired stiffness tensor

• Bond breaking and reforming can be used to simulate metal plasticity
 – Elastic and plastic behavior is coupled based on our initial results
 – Will refine model to capture desired strength, hardening, and slip plane orientation behavior
Steps to Project Completion

- **Elastic Anisotropy:**
 - Run large DFT-MD simulation to verify constants at 600°C for Ni-20Cr
 - Refine element stiffness formulation to get correct tensor for Ni-20Cr alloy

- **Plasticity:**
 - Determine strain hardening law at 600°C for Nimonic 75 using tensile samples as function of strain rate
 - Refine bond breaking and reforming scheme to capture desired strength, hardening, and slip plane orientation behavior

- **Creep:**
 - 600°C creep response well known from literature
 - Determine softening laws at 600°C for Nimonic 75 using tensile stress relaxation experiments
 - Develop time dependent bond breaking and reforming scheme to capture creep behavior

- **Final Model Assembly:**
 - Combine above elements into a crystal plasticity DEM model for Nimonic 75
 - Validate and refine model based on experimental creep results
Questions?
Cubic Anisotropy for Nimonic 75

- Density Functional Theory (DFT) used to calculate C_{11}, C_{12}, C_{44} for Ni-20Cr at 0 K
 - Special quasi-random structure (SQS) supercell
 - Only small deviation from pure Ni seen in C_{11}

<table>
<thead>
<tr>
<th>Material</th>
<th>Equilibrium lattice parameter, a, Å</th>
<th>Bulk modulus B, GPa</th>
<th>Zener’s modulus $C’$, GPa</th>
<th>C_{11}, GPa</th>
<th>C_{12}, GPa</th>
<th>C_{44}, GPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Ni (2x2x2 supercell)</td>
<td>3.518</td>
<td>200.1</td>
<td>55.7</td>
<td>274.3</td>
<td>163.0</td>
<td>128.8</td>
</tr>
<tr>
<td>Ni-20Cr (2x2x2 SQS supercell)</td>
<td>3.523</td>
<td>204.1</td>
<td>60.0</td>
<td>284.1</td>
<td>164.1</td>
<td>131.7</td>
</tr>
</tbody>
</table>
MD simulations at $T > 0\,\text{K}$ using embedded atom method and a 3×3 SQS supercell.

For pure Ni, we can compare elastic softening of C_{11}, C_{12}, C_{44} to published data.

In both cases, fitting elastic softening to Watchman functional is appropriate.

Future DFT-MD simulation at $600\,\text{°C}$ will verify extrapolation.

\[C_{ij}(T) = C_{ij}^{T=0} - B_{ij} T \exp \left(-\frac{T_M}{T} \right) \]

C_{ij} at $0\,\text{K}$

\simDebye temperature

\simGruneisen parameter