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Power Plants Will Need to be Capable 
of Flexible Operation 

- Frequent (~daily) load cycling will result in significant creep-fatigue interaction
- Project will focus on:

- Long term creep fatigue testing and lifetime modeling
- Study of microstructurally small cracks under creep-fatigue loading
- Interactions among creep fatigue and oxidation

week1 week2 week3 week4 week1 week2 week3 week4

* Ralf Mohrmann, Proceedings Liege conference 2014

*
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Creep-Fatigue Behavior of Gr.91 Steel
- Gr.91 creep performance is significantly affected by cyclic 
loading due to microstructure changes (Fournier et al. 2008) 

- No significant effect of cyclic creep (unloading/loading) due to 
limited cyclic strain ( 3500h, ~50 cycles)

Creep-Fatigue Tests at 550ºC
- sub grain coarsening
- dislocation density decrease As Received
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Significant Increase of Creep Rate for 
Longer Creep Tests

- Systematic increase 
(~X2) of creep rate due 
to cycling
- Need to focus on long 
term test / low creep 
rate
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Creep-Fatigue Behavior of Gr.91 Steel
- Decrease of cycle to rupture with hold time

- No cavity observed after testing

- Main effect of hold time is related to the formation of multi-layer 
thick scale vs thin scale on pure fatigue specimens

- Need for longer creep fatigue test duration

Fournier et al. (2008)

Fatigue Creep-Fatigue
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Decrease of Nf with Hold Time for 
Creep-fatigue Tests at 625ºC, ±0.25% 
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Decrease of Nf with Hold Time for 
Creep-fatigue Tests at 625ºC, ±0.5%? 
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Significant Decrease of Stress During 
10h Hold Time

- Close to a steady stress after ~2h
- Creep lifetime at 625ºC, 100MPa ~ 5000h
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Slow Evolution of “Steady Stress” for 
10h Hold Time Test
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Thicker Oxide Scale for Tests 
Performed at ±0.5%, 10min Hold Time 

±0.25%,10min ±0.25%,No hold ±0.5%,10min ±0.5%,No hold



15

Higher Strain Leads to Oxide Scale 
Cracking and Re-oxidation
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New Set up to Study Microstructurally
Small Crack Growth at High TºC

• Sumit Bahl’s work (Indian Institute of Science)

• Slower propagation for small cracks

• Fournier et Al.(2008)

• - Initiation: Tanaka and Mura model

• - Propagation: Tomkins model 

• Crack initiation at room temperature

• High cyclic Fatigue & Creep Fatigue Testing

• In Situ imaging of crack propagation

• Tests conducted at Room and 550ºC
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Crack Growth Imaging at Room TºC

300μm
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No Frequency Effect on Crack 
Propagation
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No Effect of Hold Time on Crack 
Propagation

Test initiated with 
10min hold time 

Results consistent with 
decrease of dislocation 

density at crack tip
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BCS* Theory Crack Growth 
Characterization 
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Small Fatigue Crack Growth Model 
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Results at room and 550ºC Consistent 
with Crack Growth Model

Room and 550ºC data

Tensile testing at different deformation rates
Microstructure characterization to evaluate dislocation density
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Creep-Fatigue-Oxidation Interaction in 
Steam?

In Air: 
From protective scale to non-
protective scale due to 
cracking and re-oxidation
In Steam:
Effect of strain on Non-
protective scale?
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Martensitic Gr. 91 and fully ferritic 9Cr 
alloys creep tested at 650ºC in air and 

steam

Similar composition but different microstructures:
-Gr.91-1 = standard commercial heat treatment
Normalization: 1040ºC and Tempering: 730-760ºC 
- Gr.91-2 = standard commercial heat treatment
Normalization: 1080ºC and Tempering: 760ºC 
- 9Cr = Non heat treated material
Fully ferritic as-fabricated microstructure 

Alloys Fe Cr Mo Si Mn V C
Gr.91-1 Bal. 8.31 0.9 0.13 0.34 0.26 0.08

Gr.91-2 (or 9Cr) Bal. 8.61 0.89 0.11 0.27 0.21 0.08
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Effect of Load-Bearing Scale for Thin 
9Cr Specimens

- Thinner specimen to increase the volume to surface ratio
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Stress Calculation Is Very Consistent 
With Load Bearing Scale

- Average oxide scale 
based on parabolic growth
to calculate  Soxide and S9Cr

− σ9Cr estimated from 
lifetime in steam

σ9Cr

Specimen (mm) Scale (μm) σ oxide (MPa)
2 38 127
1.5 62 132
1 51 134

Thickness
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No Effect or Small Increase of Lifetime 
in Steam vs Air for Gr.91 Alloys

- Again consistent with Load-Bearing Scale compensating for 
metal loss

Ongoing
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Healed cracks lead to a Continuous 
Bearing Inner Oxide scale

Gr91-1, Steam, 350h,100MPa 

50μmGr91-1

Inner Layer

Outer Layer

Healed Crack
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Decrease of Lifetime in Steam due to 
Thermal Cycling 

On going

650ºC

10h

250ºC

2h 3.5h
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Similar Oxide Scale Microstructure for 
Specimens Thermally Cycled

- Local cracking of the scale leads to sudden increase of stress 
and rupture?
- Ongoing cyclic air test to verify Gr.91 microstructure is not 
affect by thermal cycling

50μm 

a) b) 

Inner Layer

Outer Layer

Gr.91-1, 855h Gr.91-2, 2512h
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Future Activities

- Conduct microstructure characterization of cyclic creep, creep 
fatigue and fatigue crack growth specimens

- Sub grain coarsening

- Decrease of dislocation density

- Cavity formation

- Continue long-term tests

- Conduct fatigue and creep-fatigue testing in steam. 

- Design is Ready

- Effect of cyclic loading on a thick non protective scale?
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