ComTest-AUSC Thick-walled Cycling Header Development - Phase I

Reddy Ganta
Technology Manager, Boiler Pressure Parts
April 20, 2016

Imagination at work
Thick-walled Cycling Header Development

Acknowledgements

DOE NETL
- Jason Hissam
- Vito Cedro

GE Power
- Jim Pschirer
- John Marion
- Bruce Wilhelm
- Wei Zhang
- Yen-Ming Chen
- Zhiquan Zhou

GE Global Research
- Monica Soare
- Chen Shen
Thick-walled Cycling Header Development

Agenda

• Technical Background
• Statement of Objectives
• Potential Significance
• Project Team
• Technical Approach
• Project Schedule
• Project Status
Thick-walled Cycling Header Development
Technical Background

- Conceptual AUSC Boiler design steam cycle
 - temperatures are 730/760C (1350/1400F)
 - pressures 240-350 bar (3500-5200 psi)
- Future boiler designs require operation in daily and weekly cycling mode
- Startup-shutdowns such as weekly warm-starts have high ramp rates, 1.5% to 5%/min
- Critical high temperature components in the boiler, such as superheater and reheater outlet headers, require latest high creep strength nickel-based superalloys Inconel 740H and Haynes 282
Thick-walled Cycling Header Development

Technical Background

• SH outlet headers for high pressures, even with the high strength superalloys, require large wall thicknesses, in the range of 125 to 150mm (5 to 6”)
• Thick walls and high ramp rates subject the headers to very high thermal cycling stresses causing
 ➢ High cyclic usage of the material fatigue limits
 ➢ Creep strain accumulation over the duration of the design life.
• Tube boreholes and outlet nozzle connection welds cause stress concentration effects and limit design fatigue/creep life
Thick-walled Cycling Header Development
Technical Background

• Latest nickel-based superalloys 740H and H282 have successfully been tested for fireside corrosion and steam-side oxidation in coal-fired boiler environments demonstrating applicability to superheater and reheater tubing in AUSC conceptual design (Alstom’s Plant Barry steam loop and others).

• These alloys have also been tested for their high strength creep and fatigue properties in the laboratory specimens (ORNL).
Thick-walled Cycling Header Development

Objectives

Objectives of Phase I is to demonstrate:

- Adequacy of the latest available high strength nickel-based superalloys for severe thermal cycling (warm-start) fatigue transients

- Adequacy of thick-walled header components in full-scale conceptual AUSC boiler design for creep life

Fatigue Life

Creep Life

This document contains Proprietary Information of the General Electric Company and may not be used or disclosed to others without the written permission of General Electric Company.
Thick-walled Cycling Header Development

Objectives

Phase I project scope

• Design a simulated cycling header system for a ComTest-AUSC pilot to be performed in Phase II of this project

• Analytical development of tools to be used through CFD for heat transfer rates in
 ➢ full-scale AUSC conceptual design SHOH
 ➢ simulated ComTest-AUSC cycling header

• Perform long term creep life assessment of AUSC conceptual design SHOH through latest available material creep constitutive equations using continuum damage mechanics (CDM) approach.

• Identify host facility for the ComTest-AUSC

• Detailed design layout of the ComTest-AUSC header system including instrumentation that will be required for monitoring the cycling transient conditions
Thick-walled Cycling Header Development
Roadmap to AUSC Demo

<table>
<thead>
<tr>
<th>Year</th>
<th>Materials Development</th>
<th>Component Mockup</th>
<th>Steam Loop at Plant Barry</th>
<th>AUSC-COMTEST</th>
<th>AUSC Demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Laboratory TRL 2 to 3</td>
<td>Proof of Concept TRL 4</td>
<td>Component Test TRL 4 to 5</td>
<td>System TRL 6 to 8</td>
<td>Overall TRL 7 to 9</td>
</tr>
</tbody>
</table>

Current DOE-sponsored programs designed to bring components to TRL 5;
AUSC-COMTEST will bring system to TRL 7 or 8

This document contains Proprietary information of the General Electric Company and may not be used or disclosed to others without the written permission of General Electric Company
Thick-walled Cycling Header Development
Potential Significance

- Demonstrate adequate fatigue cycling design life for the critical pressure part components in the AUSC boiler with high ramp rates required for coal fired power plants.

- Provide design guidelines for the dynamic operation of the boiler for design conditions that result in better material fatigue conditions

- Assess the long term creep life of critical pressure part components at AUSC temperatures using the latest state-of-the-art material constitutive models for high strength nickel alloys

- Design a header component for ComTest-AUSC with full analytical evaluations and simulations to increase the probability of a successful test in Phase II of this project
Thick-walled Cycling Header Development
Technical Approach

Phase I of the project has six major Tasks

Task 1: Project Management and Reporting
Task 2: Conceptual Design of Cycling Header
Task 3: CFD Analysis of Thick-walled Header
Task 4: MI Evaluation of Header, Tubing, and Welds
Task 5: Design of Thick-walled Header Component
Task 6: Host facility Selection for ComTest-AUSC
Thick-walled Cycling Header for ComTest-AUSC Technical Approach

Task 2 Conceptual Design of Cycling Header

Full-scale AUSC SHOH design and transient

ComTest-AUSC cycling header design and transient
Thick-walled Cycling Header Development
Technical Approach

Task 3: CFD Analysis of Thick-walled Header

- **AUSC conceptual design SH outlet header CFD analysis**
- **ComTest-AUSC CFD Model**
 - Youngstown with 600 psi (currently assumed & proceeding)
 - Southern Company Barry with 3500 psi (if decided, design needs to be updated to Southern’s flow conditions)
- **Benchmark examples from GE Power CFD experience**
 - Straight Pipe Flow CFD HT Coefficient Prediction
 - Header - HTC for Molten Salt
Thick-walled Cycling Header Development

Technical Approach

- AUSC SHO Header pipe size 26” OD, 5.7” wall thickness
- Material Inconel 740H or Haynes 282
- Flow rate 5.6M lbs/hr
- Temperature 1350F, Pressure 5200 psig
Thick-walled Cycling Header Development
Technical Approach

ComTest-AUSC header design

• Five different cases analyzed by CFD for flow rates, velocity and heat transfer film coefficients
• Southern USC steam pressure at 3500 psi test
 - 100k to 130k lbs/hr flow rate
 - 1400F temperature
 - Pipe ID 4 to 8”, wall thickness 3”
• Youngstown pressure 600 psi
 - 100k to 130k lbs/hr flow rate
 - 1400F temperature
 - Pipe ID 4 to 8”, wall thickness ~3”
Thick-walled Cycling Header Development
Technical Approach

Option 1

Option 2
Thick-walled Cycling Header Development
Technical Approach

Option 3

Option 4

Option 5a & b
Thick-walled Cycling Header Development

Technical Approach

Flow Split: 12.4% 87.6%

Velocity contours

Pressure contours

Heat transfer rates
Thick-walled Cycling Header Development

Technical Approach

- CFD analysis performed for steady-state conditions at two different flow rates
 1) full flow rate and 1400F temperature
 2) ~800F with full or partial flow rate
- Heat transfer coefficients for the transient between the lower temperature and full load temperature will be interpolated according to flow rate and steam properties at temperatures.
Thick-walled Cycling Header Development
Technical Approach (with two goals)

Task 4: Mechanical Integrity Evaluation

4a: ComTest-AUSC Fatigue Cycling
- Design ComTest header configuration
- Includes tube penetrations
- No branch nozzle in CFD studies
- Accelerated **thermal cycling**
- Test temperature 760°C (1400°F)
- Test pressure 41 bar (600psig)
- Materials: 740H & H282
- Transient cycle configured using two steady-state CFD analyses
- Fatigue data: Literature & ORNL data
- MI analysis for thermal transients
- Assess **fatigue life (no creep)**

4b: Conceptual AUSC SHOH Creep Life
- 1000MW AUSC SHO header design
- Includes tubes and branch connection
- Welds included but with a knock-down factor over the base material properties
- Temperature 730°C (1350°F)
- Pressure 220-350 bar (3200-5200psig)
- Material: Base H282
- Heat transfer rates from CFD study for the 1000 MW conceptual AUSC SHOH
- Use GE **CDM** models
- MI analysis for creep damage
- Assess **creep life (no fatigue)**
Thick-walled Cycling Header Development
Technical Approach

Task 4a: ComTest-AUSC cycling header fatigue assessment

- Comtest-AUSC cycling header fatigue analysis for test condition accelerated fatigue cycling transients
 - Actual test header design configuration with upstream header 740H and downstream header H282
 - Includes tube penetrations
 - No branch nozzle
 - Accelerated test cycling transients for fatigue
 - Assess for fatigue usage with 740H and 617 material fatigue data

ComTest-AUSC cycling header
ComTest-AUSC header model
Thick-walled Cycling Header Development
Technical Approach

Full-scale SHOH and ComTest Cycling Header Transients

Flow Split: 17.5% 82.5%

Full-scale AUSC SHOH design and transient

ComTest-AUSC cycling header design and transient
Thick-walled Cycling Header Development
APROS Transient Simulation

- Valve operating scenario at Youngstown
- Ramp rates
- Low and high temperature flow mix

flow rate & temperature with 4 valves operating simultaneously

flow rate & temperature with control valves operating in two steps
Thick-walled Cycling Header Development

H282 Constitutive creep model

Develop macroscopic models capturing the effect physical micro-mechanisms and microstructure (e.g. dislocation climb-bypass & diffusion creep)

Base Metal H282, Creep model 1400-1700°F
Thick-walled Cycling Header Development
H282 creep model development & application

Test specimen creep strain data

Benchmark FEA Verification

Damage parameter contours

Borehole stress, creep strain & damage parameter history
Thick-walled Cycling Header Development
Technical Approach

Task 4b: Full-scale AUSC SHOH Creep Life Assessment

- Long term creep life assessment of full-scale AUSC SHO header using high temperature superalloy CDM models for analysis includes:
 - inlet tubes with welds
 - “Tee” section of a header with one branch nozzle and weld
 - H282 base metal model only for now
 - H282 weld material model if available in in Phase I
 - 740H base and weld material models in the future when available

Benchmark Test Specimen

Full-scale AUSC SHOH Model

AUSC SHOH Analysis Model

H282 CDM creep model data
Thick-walled Cycling Header Development
Technical Approach

Task 5: Design of Thick-walled Header Component

- Design layout of the ComTest-AUSC cycling header including desuperheater
- Identify instrumentation and location on the header for measurement of field data
- Define ComTest-AUSC test program including transient cycles (flow rates, temperature, pressure, ramp rates)
- Develop preliminary drawings for the layout for ComTest-AUSC header system
- Define ComTest-AUSC program thick-walled header system “flange-to-flange”

Task 6: Host facility Selection for the ComTest-AUSC

- Input to the site selection criteria - October 2015
- Identify the available site parameters for input to the cycling header design – December 2015
- Input to process design and CFD groups for analysis – Youngstown Thermal as test facility
Thick-walled Cycling Header Development
Project Status – Host Facility Decision

• Currently host facility test site is to be Youngstown Thermal (YT) plant in Youngstown, Ohio

• Design parameters with flow rates of 133,000 lbs/hr, pressure of 600psig and temperature of 1400F are used in the process design and CFD analyses.

• A change of the host site from YT to Southern Company with SC pressure conditions will require a new process design and CFD analysis and changes in the ComTest cycling header layout.

• Final decision on the host site for the ComTest-AUSC with the thick-walled cycling header is expected to be confirmed as YT Thermal.
Thick-walled Cycling Header Development Deliverables

- Task 2: Process design of ComTest-AUSC cycling header layout and flow conditions (input to CFD group)

- Task 3: CFD Analysis to identify heat transfer rates (input to MI group)
 - Flow and heat transfer rates for the 1000 MWe full-scale conceptual AUSC SH outlet header at full and half load conditions
 - Flow and heat transfer rates for the ComTest-AUSC cycling header for YT site steam parameters (pressure, temperature and flow rates) at two steady-state conditions

- Task 4: Mechanical integrity evaluation (final report)
 - Benchmark creep analysis of test specimen using the CDM creep models
 - Creep life assessment of Conceptual AUSC SHOH with H282 CDM models
 - Transient analysis and fatigue evaluation of ComTest-AUSC cycling header

- Task 5: Design layout of ComTest-AUSC cycling header system including instrumentation type and locations (final report)
Thick-walled Cycling Header Development

Project Status

- Project awarded in mid September 2015
- Kick-off meeting with DOE PM, 17th November 2015.
- Process design of ComTest-AUSC configuration completed, input provided to CFD group
- CFD for the full-scale conceptual AUSC SHOH and ComTest-AUSC cycling header test have been completed. Two-header system with a single branch connection selected for proper flow split and heat transfer rates.
- An analytical evaluation of simulated transient for ComTest-AUSC cycling header configuration performed using simple pipe geometry.
- Different valve operating scenario simulated through APROS for obtaining proper ComTest transient cycle temperature transient, pressure drop and flow rates identified.
- Long term creep life assessment model for Haynes 282 parent material developed by GE GRC, verified through the test specimen benchmark problems and applied on a conceptual full-scale AUSC SHOH design for long time creep life assessment.
- A paper on the creep assessment of full scale AUSC header component using the H282 nickel alloy CDM model has been submitted to the ASME/EPRI Conference to be held in July 2016.
- Analysis of ComTest-AUSC cycling header test configuration for thermal fatigue has been started.
Thick-walled Cycling Header Development
Going forward –

Notched Bar Creep Tests

• H282 notched bar creep tests, 100 to 1000 hours
• Digital image correlation
• Simulates three-dimensional multi-axial stress effect
• Validate 3D creep constitutive models at 1400F
• Suitable for boiler component applications
Thick-walled Cycling Header Development
Project Status

- First application of superalloy (H282 base metal) creep constitutive model applied for the long time creep life assessment of conceptual full-scale AUSC SHOH component.
Thick-walled Cycling Header Development
Project Milestones – Phase I
Thick-walled Cycling Header Development

Constitutive creep model - Dislocation climb

\[
\dot{\varepsilon}_{\text{creep}} = \varepsilon_{\text{disloc}} + \varepsilon_{\text{diffusion}}
\]

\[
\dot{\varepsilon}_{\text{disloc}} = A(T) \rho(T) f(T) (1 - f(T)) \left(\frac{\pi}{4 f(T)} - 1 \right) \sinh \left(\frac{\sigma_{\text{eff}} - \sigma_{\text{climb}}(T) - \sigma_0(T)}{MkT} \lambda(T) b^2 \right)
\]

\[
\sigma_{\text{climb}}(T) = \frac{2 f(T)}{1 + 2 f(T)} \sigma_{\text{eff}} \left[1 - \exp \left(- \frac{1 + 2 f(T)}{2(1 - f(T))} E(T) \frac{\varepsilon_{\text{disloc}}}{\sigma_{\text{eff}}} \right) \right]
\]

\[
\sigma_0 = 0.25 Mg(T)b \sqrt{\rho}, \quad \rho = \rho(C)
\]

\[
\rho = \begin{cases}
\rho_i + (\rho_f - \rho_i) \varepsilon / \varepsilon_{\text{crit}} & \text{if } \varepsilon \leq \varepsilon_{\text{crit}} = C \sigma_{\text{eff}} \\
\rho_f & \text{if } \varepsilon > \varepsilon_{\text{crit}} = C \sigma_{\text{eff}}
\end{cases}
\]

\[
\omega = \omega_{\text{diff}} + \omega_{\text{disloc}}
\]

\[
\dot{\omega}_{\text{disloc}} = D \dot{\varepsilon}_{\text{disloc}}
\]

H282 model developed for high temperatures

Total creep – effect of dislocation and diffusion creep mechanisms

B. F. Dyson, MST 2009, p213

This document contains Proprietary information of the General Electric Company and may not be used or disclosed to others without the written permission of General Electric Company
Thick-walled Cycling Header Development
Constitutive creep model - Diffusion component

\[\dot{\varepsilon}_{\text{diffusion}} = \dot{\varepsilon}_{\text{lattice_diff}} + \dot{\varepsilon}_{\text{boundary_diff}} + \dot{\varepsilon}_{\text{cavity_boundary_diff}} + \dot{\varepsilon}_{\text{cavity_surface_diff}} \]

\[\dot{\varepsilon}_{\text{boundary_diff}} = 3\pi\xi \left(\frac{l}{d}\right)^3 \sigma_{\text{applied}} (1 + \varepsilon^{\text{creep}}) \]

\[\dot{\varepsilon}_{\text{lattice_diff}} = \xi \beta \sigma_{\text{applied}} (1 + \varepsilon^{\text{creep}}) \]

where \(\beta = \frac{3D_V}{D_B \delta_B \frac{l^3}{d^2}} \)
\(D_V \) is a constant
\(\xi = F \frac{4D_B \delta_B \Omega}{l^3 k_B T} \)
\(D_B \delta_B \) is a constant

\[\dot{\varepsilon}_{\text{cavity_boundary_diff}} = \xi \frac{l}{d} \frac{\sigma_{\text{applied}}}{\ln(1/\bar{\omega}_{\text{boundary_diff}})} \]

\[\dot{\varepsilon}_{\text{cavity_surface_diff}} = \xi \alpha \frac{\sqrt{\bar{\omega}_{\text{surface_diff}}} \sigma_{\text{applied}}^2}{(1-\bar{\omega}_{\text{surface_diff}})^3} \]

H282 model adapted for high temperatures
Thick-walled Cycling Header Development

Acknowledgements

This material is based upon work supported by the Department of Energy under Award Number DE-FE0026183.

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Information disclosed herein is furnished to the recipient solely for the use thereof as has been agreed upon with ALSTOM and all rights to such information are reserved by ALSTOM. The recipient of the information disclosed herein agrees, as a condition of its receipt of such information, that ALSTOM shall have no liability for any direct or indirect damages including special, punitive, incidental, or consequential damages caused by, or arising from, the recipient’s use or non-use of the information.