Materials for Advanced Ultrasupercritical Steam Turbines -Advanced Ultra-supercritical Component Demonstration

DOE Contract Number DE-FE0025064

Robert Purgert

Principal Investigator Energy Industries of Ohio

Horst Hack

Presenter

Electric Power Research Institute

2016 Crosscutting Research Portfolio Review

April 20, 2016 Pittsburgh, PA, USA

© 2016 Electric Power Research Institute, Inc. All rights reserved

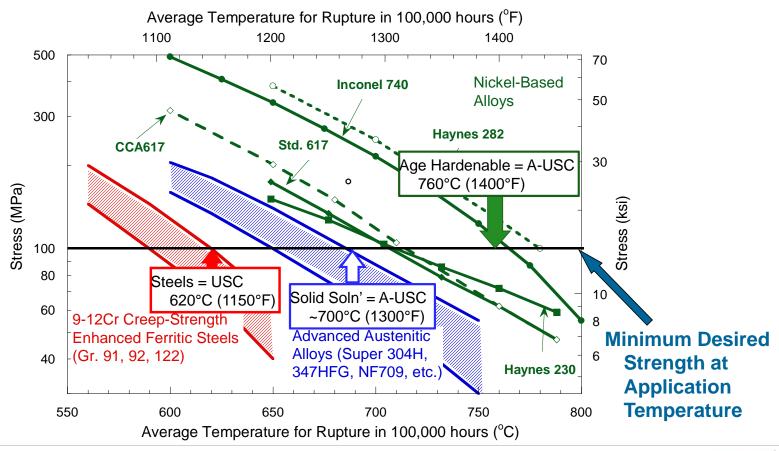
What is "Advanced Ultra-Supercritical"?

Nomenclature	Steam Conditions	Net Plant Efficiency (HHV)
Subcritical	2400psig 1000 to 1050°F	35%
Supercritical (SC)	>3600psig ~1050°F (550°C) and above	38%
Ultrasupercritical (USC)	>3600 psig ~1100°F (600°C) and above	>42%
Advanced- UltraSupercritical (A-USC)	4000-5000psig 1300-1400°F (700-760°C)	>45%

Higher efficiency fossil fuel cycles

- Burn less coal
- Produce fewer pollutants
- Generate less CO2

Higher temperatures and pressures

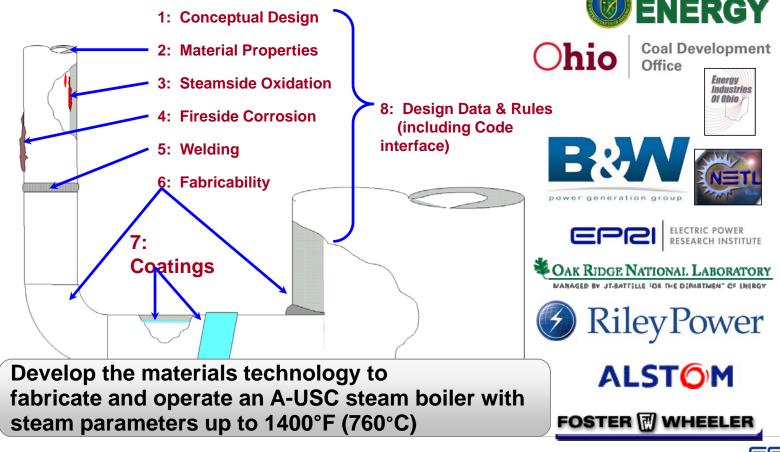

- Allow higher plant cycle efficiency
- Require advanced materials

Background of A-USC Materials Programs

- Present work builds upon 15-year effort supported by U.S.
 Department of Energy, Ohio Coal Development Office, and industry participants
 - Boiler Materials for Advanced Ultra-supercritical Coal Power Plant
 - DOE Contract: DE-FG26-01NT41175
 - OCDO Grant: CDO-D-05-02(A)
 - Materials for Advanced Ultra-supercritical Steam Turbines
 - DOE Contract: DE-FE0000234
 - OCDO Grant: CDO-D-05-02(B)

Materials Limit the Current Technology:

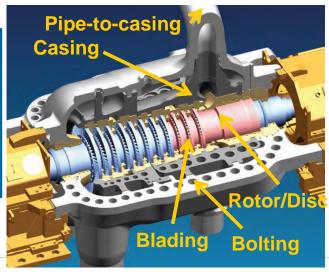
Today's State-of-the-Art (USC) are defined by steel technology



Primary Technical Goals of US A-USC Materials Programs

- Materials technology evaluation
 - Focus on nickel-based alloys
 - Development of fabrication and joining technology for new alloys
- Unique conditions for US program considerations
 - Higher-temperatures than other international Programs (760°C versus 700°C) means additional alloys evaluated
 - For boiler:
 - Corrosion resistance for US coals
 - Data for ASME code acceptance of new materials
 - Evaluate the effect of combining technology with other carbon capture technologies such as Oxycombustion

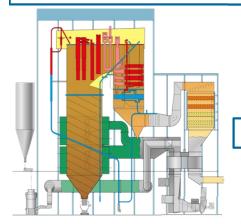
U.S. DOE/OCDO: A-USC Steam Boiler Consortium



DOE/OCDO A-USC Steam Turbine Consortium

- Selected materials from Phase I
- Rotor/disc testing (full-size forgings, environmental interaction)
- Blade alloy testing (and erosion resistant coatings)
- Cast casing scale-up alloy testing
- Casing welding and repair

1400°F (760°C) Steam turbine conceptual design (HP) – bolted construction


Turbine

- Final Phase 2 technical report recently published by DOE
 - "Materials for Advanced Ultrasupercritical Steam Turbines"
 - http://www.osti.gov/scitech/biblio/1243058

Consortia Accomplishments Summary A-USC Fact Book - EPRI 1022770

(download free at: www.epri.com)

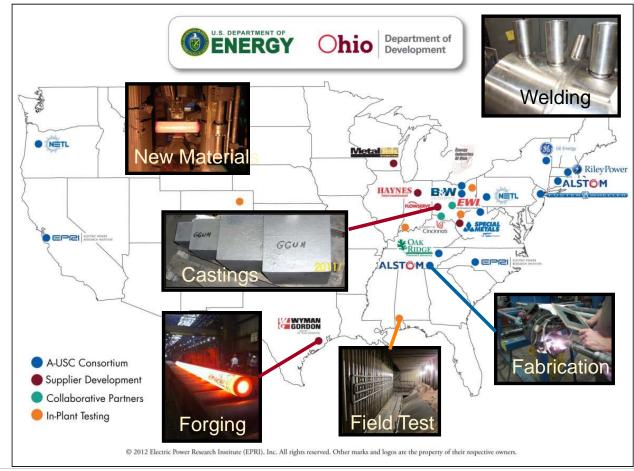
General design studies show favorable economics

Welding Technology Developments

Fabrication Processes

Steam-Side Oxidation

Fireside Corrosion (High-Sulfur Coal & In-Plant Testing)



Turbine Component Scale-up

ComTest is the Next Step for the Highly Successful and Highly Leveraged U.S. Department of Energy (US DOE) / Ohio Coal Development Office (OCDO) A-USC Steam Boiler and Turbine Consortia

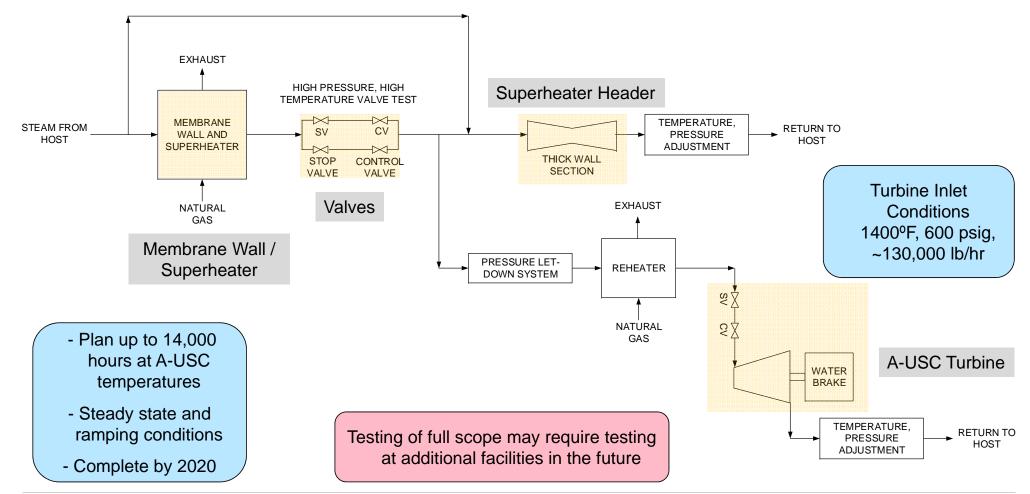
Federal – State – National Laboratory
Non Profit – For Profit
Cost Sharing Consortium

Project Objectives of ComTest

- Evaluate advanced materials and components under A-USC service conditions
- Minimize risks
 - For a firm to own and operate an A-USC plant
 - For the OEM to provide commercial guarantees
- Understand manufacturing, cost, and supply chain issues
 - First of a kind
- Validate fabrication, construction, installation and repair of A-USC components

ComTest Project Team

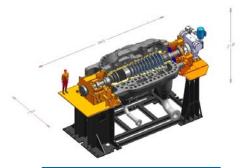
- Energy Industries of Ohio (EIO): prime contractor / administrative lead
- Electric Power Research Institute: technical lead organization
- Team members
 - AECOM EPC contractor
 - Youngstown Thermal (selected host site)
 - Advanced USC ComTest Consortium
 - EPRI
 - Babcock & Wilcox
 - General Electric Power (turbine design group)
 - General Electric Power (former Alstom Power)


Utility Advisory Committee

- Formed in 2014 to support the development of a U.S. based A-USC Component Test Facility
- Current membership
 - Southern Company
 - -AEP
 - Duke
 - FirstEnergy
 - Tri-State

- Prioritize needs, from utility perspective, and provide critical input to build confidence in using A-USC technology
- Ensure A-USC technology is ready when needed by industry
- Support project by defining technology needs, justifying technical approach, providing potential host site(s), collaborating with the project team, and informing stakeholders

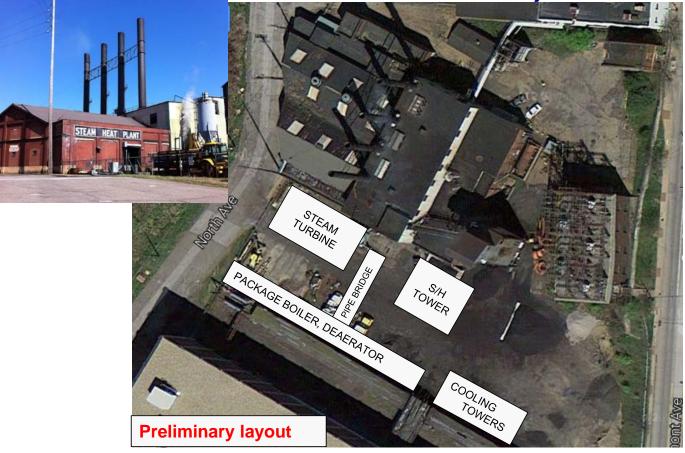
ComTest Schematic



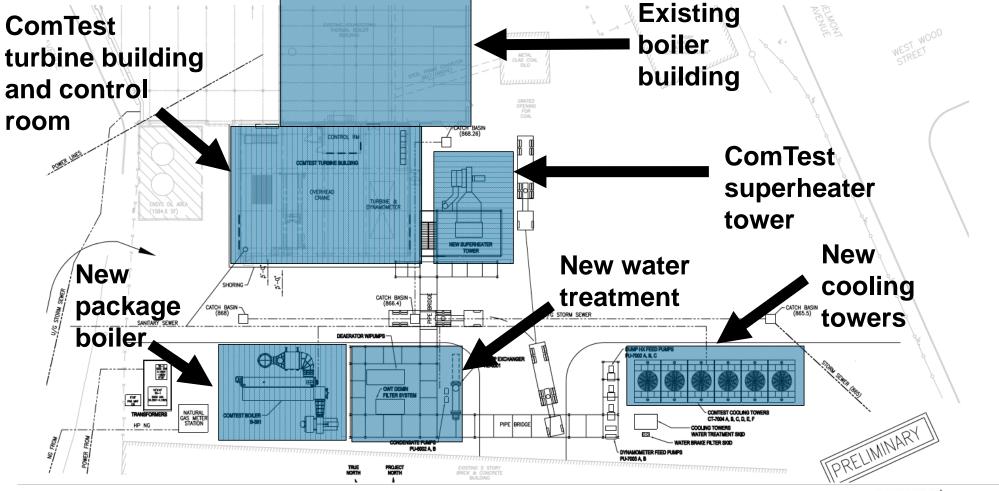
ComTest Technical Project Goals

- Demonstrate high pressure boiler reliability and safety
 - Design, install, start-up, operate and cycle high temperature nickel components (Inconel 740H & others)
 - Large diameter thick-section piping
 - Membrane wall with advanced steels and alloys
 - Cycling header and tubes
 - Superheater materials exposure (at pressure & temperature)
- Demonstrate high temperature turbine and components in operation
 - Design, install, start-up, operate and cycle full size steam valves & ComTest steam turbine at 760°C
 - High temperature steam valves
 - Materials & coatings
 - Turbine architecture
 - Oxidation, deposits, solid particle erosion (SPE)
 - NDE/NDT

Proposed ComTest Superheater



Proposed ComTest Turbine


Primary A-USC ComTest Site Youngstown, Ohio

(Former Ohio Edison Generation Plant)

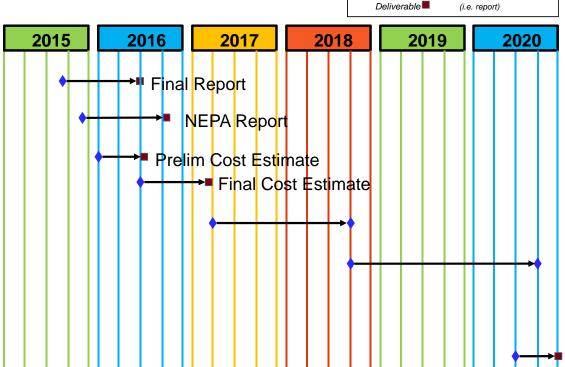
Equipment Arrangement Plan at Youngstown Site

Alternate A-USC High Pressure Test Site Mobile, Alabama

Accomplishments

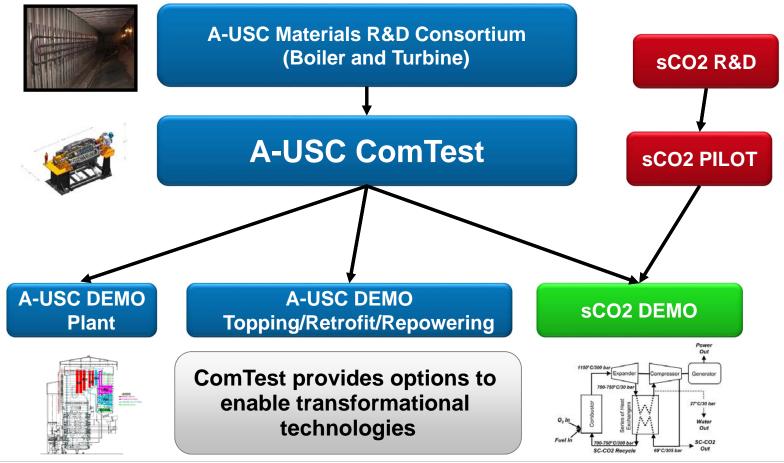
- Multiple potential host sites evaluated
- Primary and alternate host sites identified
- Pre-FEED and FEED tasks completed
 - Preliminary capital cost estimate prepared
 - PFD and P&ID documents developed
 - Interface conditions defined for scope boundaries
 - Equipment arrangement defined for host site
- US-based supply chain development ongoing
- NEPA for primary host site proceeding

Next Steps


- Proceed with Detailed Engineering effort
- Complete NEPA procedure in support of environmental assessment for host site
- Finalize testing operating plans
- Develop procurement specifications for equipment
- Construct ComTest facility
- Operate for two years (ending in 2020)

A-USC ComTest Preliminary Schedule

- NEPA
- FEED
- Detailed Engineering
- Procurement & Construction
- Operation
 - a. Membrane Wall & SH
 - b. Cycling Header & Valves
 - c. Steam Turbine
- Evaluation & Reporting



Milestone

(i.e. meeting, presentation

Transformational technologies will need the <u>A-USC materials</u> and components demonstrated in ComTest

Together...Shaping the Future of Electricity

