Novel Silica Nanostructured Platforms with Engineered Surface Functionality and Spherical Morphology for Low-Cost High-Efficiency Carbon-Capture (FE-0023541)

Nicholas Pizzi, Po-Yu Hwang, Dr. Cheng-Yu Lai, Dr. Daniela Radu Delaware State University

Motivation for Study

Fossil Fuel and Cement Emissions

Global fossil fuel and cement emissions: 36.1 ± 1.8 GtCO₂ in 2013, 61% over 1990

• Projection for 2014 : 37.0 \pm 1.9 GtCO₂, 65% over 1990

Background and Motivation for the project

At the 2014 Climate Summit, President Obama called for further reductions in greenhouse gas emissions.

- The implications of the 2014 carbon budget for remaining below two degrees (At the current rate of CO₂ emissions, this 1200-billion-tonne CO₂ 'quota' will be used up in around 30 years – or one generation. *Nature Geoscience*, published 22 September)
- 2. Option to share the remaining <u>fossil fuel quota</u> to meet the two degree target (Sharing a quota on cumulative carbon emissions. *Nature Climate Change*, published 22 September)
- How much societies will need to rely on untried <u>technologies</u> to remain below two degrees? (Betting on negative emissions. *Nature Climate Change*, published September 21th, 2014)

CO₂ Reduction and Climate Change

The Paris Agreement will be signed on Earth Day 2016, April 22nd

Over 195 countries reached an historic agreement in Paris at the 2015 United Nations Conference on Climate Change. In short, they agreed to take measurable action, make binding commitments, and work together to reduce greenhouse gas emissions to collectively keep global temperature rise well below 2°C and to pursue efforts to limit it to 1.5°C.

Pathways to CO₂ Capture

- 1. Post-Combustion $-CO_2$ is separated from other flue gas constituents either originally present in the air or produced by combustion.
- 2. Pre-Combustion carbon is removed from the fuel before combustion.
- 3. Oxy-Combustion the fuel is burned in an oxygen stream that contains little or no nitrogen.

Project Goal and Objectives

<u>Goal</u>

Identify, develop, and optimize engineer sorbent silica nanospheres, with high CO_2 capture capacity at low cost and with high recyclability, and a subsequent coated platform with enhanced nitrogen selectivity.

Objectives

1. Demonstrate a nanosheets made silica nanosphere (NSN) platform as solid sorbent with spatial control of CO_2 capture amine functionality and high amine loading at least 7 mmol N/g sorbent, with hybrid sorption–adsorption/absorbtion capacity of at least 5 mmol CO_2 per gram of NSN sorbent;

2. Perform parametric and long duration tests to demonstrate performance target of CO_2 capture at >90% of simulated flue gas with 15% CO_2 ;

3. Engineer a gatekeeping polymeric layer on NSN surface (PolyNSN), designed to increase CO_2 capture selectivity in the capture process;

4. Perform parametric and long duration tests to demonstrate proof of concept of nitrogen exclusion in selective CO_2 capture in PolyNSN.

• Separation Technologies for CO₂ Capture

Materials for CO₂ capture in the context of postcombustion, precombustion, and oxyfuel processes.

Conventional Chemical Absorption for CO₂ Capture

Scheme 1. General reactions for the chemical absorption of CO2 by a) primary or secondary and b) tertiary amine-containing solvents.

Complications associated with the use of *liquid amines*: **corrosion** on equipment, **oxidative degradation** of absorbents, flow problems caused by increasing viscosity relatively **high energy consumption** suggest that this method is far from ideal.

Need for Solid Sorbents

• Emerging Solid Sorbent Materials for CO₂ Capture

Functionalized Mesoporous Silica Nanospheres

- Multiplayer Amino Silane for Enhancing CO₂ adsorption Capacity

CTAB: cetyltrimethylammonium bromide

SEM/TEM micrographs of functionalized **MSN**

Classification of immobilized Amine Mesoporous Silica Sorbents

Porous silica supports have been loaded with CO_2 -trapping amine sites using three primary methods: physical impregnation, covalent tethering and in situ polymerization within the pores.

Bollini, P., Didas, S.A., and Jones, C.W. 2011. J. Mater. Chem. 21, 15100–15120.

Pitfalls in Designing MCM-41 Type orbent for CO₂ Capture

• Pitfalls for CO₂ capture:

-Pore Blocking Hindering Amine Permeability

<u>Typical MSN</u>: cylindrical pores of drive closepacking of amine groups and render inner amino groups inaccessible for CO₂ capture

Retard Adsorption Kinetics for CO₂ DIFFUSION

SOLUTION: Large Pores–MSN (Hierarchical-pores MSN)

Scheme 2. 3-(Methylamino)-propyltrimethoxysilane (MAP) functionalizated MSN pore

Pedro López-Aranguren, Santiago Builes, Julio Fraile, Lourdes F. Vega, and Concepción Domingo *Ind. Eng. Chem. Res.*, 2014, 53 (40), pp 15611–15619

Xin Du, Bingyang Shi, Ji Liang, Jingxu Bi, Sheng Dai and Shi Zhang Qiao. Advanced Materials, 2013, 25, 5981–5985,

Our 1st Approach – Class II Hierarchical-Pores Stellate-MSN Sorbent

(Grafting of 1 mmol silane precursor)

TEM of Stellate MSN Nanospheres

Molecular Structure BET Surface DFT Pore Average BJH Name Area (m^2/g) Volume Pore Diameter (cm^{3}/g) (nm) OCH3 H3CO-SI (3-Aminopropyl)trimethoxysilane 8.95 404.829 0.88 OCH 3-(2-Aminoethylamino)propyldimethoxymethylsilane 422.42 0.795 7.75 H-CO-N1-(3-Trimethoxysilylpropyl)diethylenetriamine 417.57 0.91 8.34 HJCO'SI

(Grafting 1 mmole silane precursor)

SEM of Stellate MSN Nanospheres

CO₂ Adsorption Analysis for Class II Stella-MSN Sorbent

- Carbon dioxide cycling experiments

will be performed on TGA Instruments analyzer using:

a). CO₂ ;

b). N_2 at a predetermined flow rate for all gases.

Scheme. TGA setting for CO₂ capture experiments

CO₂ Adsorption Analysis for Stellate- MSN Sorbent

Comparison of Absorbtive Capacity and Regeneration Capability of 1NH2 and 3NH2 Materials

Good Stability BUT low adsorption capacity

3 N amine sorbent

- 4.9 % Adsorption Capacity

- 1 N amine sorbent
- 2.2 % Adsorption Capacity

Reference	Supporting material	Grafted amine	Adsorption temperature (°C)	Adsorption (partial) pressure (bar)	Adsorption capacity (wt. %)
Serna-Guerrero et al. (2010)	Pore-expended MCM-41	Triamine-containing silane	25	0.05	9.0
Zelenak et al. (2008)	MCM-41 SBA-12 SBA-15	3-Aminopropyltriethoxysilane	25	0.1	2.6 4.5 6.7
Zukal et al. (2009)	ΙΤΩ-6	3-Aminopropyltrimethoxysilane [3-{Methylamino)propyl]trimethoxysilane [3-{Phenylamino)propyl]trimethoxysilane	20	1	5.3 4.2 2.2
Yang et al. (2012)	MCM-22 MCM-36 ITQ-2	3-Aminopropyltrimethoxysilane	25	1	6.7 5.3 7.6

Front. Energy Res., Nannan Sun1, ZhiyongTang1, WeiWei, Colin Edward Snape and Yuhan Sun 09 March 2015

Class I Hierarchical-Pores Stellate-MSN Sorbent

Praveen Bollini, Stephanie A. Didas and Christopher W. Jones J. Mater. Chem., 2011, 21, 15100

Xin Du, Bingyang Shi, Ji Liang, Jingxu Bi, Sheng Dai and Shi Zhang Qiao. Advanced Materials, 2013, 25, 5981–5985,

Our 2nd Approach – Class I Hierarchical-Pores Stellate-Silica Sorbent

TEM of NSN Nanospheres

Tetraethylenepentamine-TEPA loaded by wet impregnation

Scheme 1. Reaction between primary amines and CO2

TEPA – Stellate MSN Sorbent for Carbon Capture

Nanocomposite Sorbents for CO₂ capture materials prepared by **wet impregnation**

Table 1. Amount of TEPA used in the impregnation experiments

Material ID	Stellate MSN (g)	TEPA (g)
W0	0.5	0
W03	0.5	0.15
W06	0.5	0.3
W075	0.5	0.38
W1	0.5	0.5

TEM of TEPA treated Stellate MSN

Nichloas Pizzi, Daniela Radu, and Cheng-Yu Lai*, Chem Comm submitted

TEPA - Stellate MSN Sorbent for Carbon Capture

TEPA Loading Study

Amine loading (mmol) by TGA)
2.23
3.93
4.56
6.94

Nichloas Pizzi, Daniela Radu, and Chneg-Yu Lai*, Chem Comm submitted

Characterization of TEPA - Stellate MSN

Material ID	BET Surface Area (m²/g)	Amine Content by TGA (mmol/g)	Amine content/m ² (µmol/m ²)
W0	508.61	0.00	0.00
W03	220.361	2.23	10.12
W06	195.441	3.93	20.11
W075	193.5	4.56	23.58
W1	139.281	6.94	49.83

Nichloas Pizzi, Daniela Radu, and Cheng-Yu Lai*, Chem Comm submitted

CO₂ Adsorption Analysis for TEPA-Stellate MSN Sorbent

- Carbon dioxide cycling experiments

will be performed on TGA Instruments analyzer using:

a). CO₂ ;

b). N_2 at a predetermined flow rate for all gases.

CO₂ Adsorption Analysis for TEPA-Stellate MSN Sorbent

- Carbon dioxide cycling experiments

will be performed on TGA Instruments analyzer using:

a). CO₂ ;

b). N_2 at a predetermined flow rate for all gases.

Scheme. TGA setting for CO₂ capture experiments

- High temp Stability
- CO₂ –adsorption capacity of ~ 4.7mmol CO₂ per gram of stellate MSN sorbent
- High amine loading
 6.4 mmol N/g sorbent

Project Status

SOPO ID Number	Item Description	Performer	Start Date	End Date
TASK 2.0	Preparation and characterization of NSN-solid sorbents	LAI	06/01/14	02/28/15
Subtask 2.1	Silica Sorbents Preparation – Synthesis of NSN	LAI	06/01/14	02/28/15
Subtask 2.2	Silica Sorbents Characterization	LAI	06/01/14	02/28/15
TASK 3.0	NSN CO ₂ capture experiments	RADU	03/01/15	06/31/15
Subtask 3.1	Determine absorption capacity of NSN via thermogravimetric analysis (TGA)	RADU	03/01/15	06/31/15
Subtask 3.2	Determine the heat of absorption of NSN materials by Differential Scanning Calorimetry (DSC).	RADU	06/01/15	09/30/16
Subtask	Sorbent Regeneration Experiments	RADU	10/01/15	02/28/16
TASK 4.0	Gate-keeping layer fabrication on NSN surface	LAI	10/01/15	02/28/16
TASK 5.0	PolyNSN selective CO ₂ capture experiments	RADU	01/01/16	05/31/17
Subtask 5.1	Determine absorption capacity of PolyNSN via thermogravimetric analysis (TGA)	RADU	01/01/16	05/31/17
Subtask 5.2	Sorbent Regeneration Experiments	RADU	01/01/16	05/31/17
TASK 6.0	Conduct long-term tests to determine the chemical and physical stability of the sorbents.	RADU	06/01/15	05/31/17
Final Deliverables	<i>Final Deliverable 1:</i> Demonstrate a high performance NSN platform with at least 5 mmol CO2/g sorbent and high robustness and regeneration capacity (100%). <i>Final Deliverable 2:</i> Demonstrate a high performance PolyNSN platform with at least 5 mmol CO2/g sorbent, high robustness and regeneration capacity (100%)	LAI & RADU		05/31/17

- 1. Heat of adsorption
- Stellate MSN 28-32 KJ /mole
- Data collection for other sorbents
- 2. Simulated Flue Gas Testing
- 3. Long Term Stability Test

Task 4 and 5

- Functionalization of Gatekeeping Layer on Stellate-MSN for CO₂ selectivity Capture. (PDL-TEPA Stellate)
 CO₂ adsorption Capacity of PDL-TEPA Stellate) via TGA
- 3. CO₂ and N₂ adsorption isotherms Data collecting

Increasing CO₂ capture by introducing "Nitrogenrepellent" components

Prior approach¹: **azo-bridged**, **nitrogen-rich**, **aromatic**, **water stable**, **nanoporous covalent organic polymer (Azo-COP)** nanoporous covalent organic polymers. *Disadvantage:* Cumbersome organic synthesis.

Incorporation of facile synthesized nitrogen scaffolds significantly increases CO_2 adsorption capacities for selective carbon capture.

1. Patel, H. A.; Hyun Je, S.; Park, J.; Chen, D. P.; Jung, Y.; Yavuz, C. T.; Coskun, A., Unprecedented high-temperature CO₂ selectivity in N₂-phobic nanoporous covalent organic polymers. *Nat Commun* **2013**, *4*, 1357.

Stephan Hug, Linus Stegbauer, Hyunchul Oh, Michael Hirscher, and Bettina V. Lotsch Chem. Mater., 2015, 27 (23), pp 8001–8010

Technical background and motivation for the project

 Incorporation of facile synthesized nitrogen scaffolds for Highly Selective CO₂ Capture – *Concept* N-Selective

Nitrogen-rich, aromatic, water stable, nanoporous covalent organic polymer for Selective Carbon Capture

Path forward

	SOPO ID Number	Item Description	Performer	Start Date	End Date
	TASK 2.0	Preparation and characterization of NSN-solid sorbents	LAI	06/01/14	02/28/15
	Subtask 2.1	Silica Sorbents Preparation – Synthesis of NSN	LAI	06/01/14	02/28/15
	Subtask 2.2	Silica Sorbents Characterization	LAI	06/01/14	02/28/15
	TASK 3.0	NSN CO ₂ capture experiments	RADU	03/01/15	06/31/15
	Subtask 3.1	Determine absorption capacity of NSN via thermogravimetric analysis (TGA)	RADU	03/01/15	06/31/15
	Subtask 3.2	Determine the heat of absorption of NSN materials by Differential Scanning Calorimetry (DSC).	RADU	06/01/15	09/30/16
	Subtask	Sorbent Regeneration Experiments	RADU	10/01/15	02/28/16
	TASK 4.0	Gate-keeping layer fabrication on NSN surface	LAI	10/01/15	02/28/16
-	TASK 5.0	PolyNSN selective CO ₂ capture experiments	RADU	01/01/16	05/31/17
	Subtask 5.1	Determine absorption capacity of PolyNSN via thermogravimetric analysis (TGA)	RADU	01/01/16	05/31/17
	Subtask 5.2	Sorbent Regeneration Experiments	RADU	01/01/16	05/31/17
	TASK 6.0	Conduct long-term tests to determine the chemical and physical stability of the sorbents.	RADU	06/01/15	05/31/17
	Final Deliverables	<i>Final Deliverable 1:</i> Demonstrate a high performance NSN platform with at least 5 mmol CO2/g sorbent and high robustness and regeneration capacity (100%). <i>Final Deliverable 2:</i> Demonstrate a high performance PolyNSN platform with at least 5 mmol CO2/g sorbent, high robustness and regeneration capacity (100%) capability to exclude N2.	LAI & RADU		05/31/17

- Heat of adsorption for TEPA-Stellate MSN
 Simulated Flue Gas Testing
- 3. Long Term Stability Test

Task 4 and 5

- Functionalization of Gatekeeping Layer on Stellate-MSN for CO₂ selectivity Capture. (PDL-TEPA Stellate)
 CO₂ adsorption Capacity of PDL-TEPA Stellate) via TGA
 CO₂ and N₂ adsorption
- isotherms Data collecting

Acknowledgements

• DOE – Dr. Barbara Carney

• **Department of Chemistry**, Delaware State University

Thank you for your attention!

Questions?