

Post Combustion Carbon Capture Using Polyethylenimine Functionalized Titanate Nanotubes (FE0023040)

Melisa Stewart¹, Hongbo Du², Raghava R. Kommalapati³, Ziaul Huque⁴, Shrabanti Roy, Xinhua Shen⁵ NSF CREST Center for Energy and Environmental Sustainability (CEES) Prairie View A&M University, Prairie View, TX 77446

¹Presenter, ²Post-Doctoral Researcher, ³ Principal Investigator (PI),⁴ Co-PI ⁵ Dept. of Earth Science, University of Northern Iowa

2016 Crosscutting Research & Rare Earth Elements Portfolios Review April 18-22, Pittsburgh, Pennsylvania

Outline

- Introduction
- Objectives
- Hypothesis
- Methodology
- Results
- Conclusions
- Future Studies
- Acknowledgements
- References

Carbon Capture and Sequestration Schematic Overview of Greenhouse Gases. (n.d.). Retrieved February 25, 2016, from http://www3.epa.gov/climatech ange/ghgemissions/gases/co2.bc ml

Introduction: The Importance **Carbon Dioxide (CO₂)**

- Atmospheric CO₂ concentration has increased by over 30% since the industrial revolution due to anthropogenic
- Is a greenhouse gas
- Multiple possible ways for reducing emissions
 - use of low carbon energy sources
 - o carbon capture and sequestration
 - the most expensive part is the capture and separation of the carbon

U.S. Carbon Emissions by Source Note: All emission estimates from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013. Overview of Greenhouse Gases. (n.d.). Retrieved February 25, 2016, from http://www3.epa.gov/climatechange/ ghgemissions/gases/co2.htm

Introduction: Types of **Adsorbents**

Introduction: Polyethylenimine (PEI)

- Polyethylenimine (PEI) is a polymer with repeating unit composed of the amine group and two carbon aliphatic CH₂CH₂ spacer
 - Linear PEI fragments
 - Branched PEI fragments
 - o Dendrimer
- Linear PEIs contain all secondary amines, whereas the branched PEIs and dendrimers contain primary, secondary and tertiary amino groups

Possible Mechanisms of CO2 Reactions with Branched PEI

Introduction: PEI continued

- Branched PEI has about 30% of primary amine, 40% of secondary amine with the left (~30%) of tertiary amine
- PEI can be impregnated, grafted, or directly synthesized on mesoporous silica, mesoporous alumina, zeolites, carbon nanotubes, porous polymer, porous titanate nanotubes, clay and metal organic frames (MOF) for CO₂ capture
- Branched PEI is used in this study

Objectives

- To synthesize a novel CO₂ adsorbent of PEI-TNTs
- To characterize the samples using XRD, SEM and TEM
- To analyze the effects of temperature on the synthesis of PTNTs and CO₂ adsorption capacity
- To develop a geometric model for CFD simulation with a central porous section that represents the packed bed adsorption section
- Explore the opportunity to use the adsorbent for CO₂ capture in power plants.

Hypotheses

- It is hypothesized that:
 - Strong chemical bonding developed between PEI and TNTs when TNTs is protonated
 - CO₂ adsorption increases with increased nanotube size of TNTs
 - with increased synthesizing temperature, there will be increased CO₂ adsorption

Experimental Section: PTNTs Preparation

- 3 grams (g) TiO₂ powder was added to 120 mL 10M sodium hydroxide (NaOH) solution and stirred
- The slurry was added to a polytetrafluoroethylene autoclave and treated at 130°C, 140°C and 150°C for 24 hrs.
- The precipitate was collected (excess NaOH was removed) and washed with 0.1M hydrochloric acid aqueous solution to a pH of 1.6 and subsequently rinsed to neutral pH with deionized (DI) water. The protonated titanate nanotube was obtained, named after PTNTs.
- The neutralized precipitate was dried at 100°C overnight

Mechanism of PTNTs Generation

*Left figure: The scheme for the formation and transformation of nanotubes generated by the NaOH hydrothermal treatment and the post-treatment washing.

- After NaOH treatment, some Ti-O-Ti bonds are broken, some intermediates including Ti-O-Na and Ti-OH are developed.
- After washing with HCl above pH 8, some nano-sheets are formed.
- Continue washing to pH below 7, nanotubes are achieved through Na⁺ exchange with H⁺ in the post acid washing.

*Chien-Cheng Tsai and Hsisheng Teng, Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments, *Chem. Mater.* **2006**, *18*, 367-373

PEI-PTNTs Preparation

- 3 g PEI was dissolved in 120mL methanol and the PTNTs was added to this solution for a wet impregnation of the PEI into the PTNTs
- The mixture was stirred in a covered beaker for 2hrs. and then stirred uncovered for another 8hrs.
- The recovered residue was dried at 100°C overnight
- The resulting product was denoted as PEI-PTNTs-wt% according to the PEI loading

PEI + Methanol + PTNTs ----- PEI-PTNTs

Schematic of Adsorption Apparatus

Adsorption/ Desorption Cycle

- Adsorption capacity was determined using weight differential in adsorbent
- 1 g adsorbent was pretreated at 150°C with pure nitrogen (N₂) gas at 120 mL/min for 30mins and the weight recorded
- A mixture of nitrogen and carbon dioxide (N₂/CO₂) was passed through the adsorbent at 120 mL/min flow and at 100°C for 30mins and the weight recorded
- The steps above were repeated and the weight differential between each set of adsorption/ desorption were calculated with the difference being regarded as the CO₂ adsorbed capacity

XRD, SEM and TEM

Characterization of Nano Materials

- The crystal samples were analyzed using a Bruker D8 Advanced diffractometer with CuKα radiation and the following:
 - Scattering angle: 2θ
 - Step Size: 0.015
- JEOL JSM-7500F field emission scanning electron microscope (FE-SEM)
 - o Acc. voltage:
 - 0.5 to 30kV (SEM mode)
 - 10 V steps from 0.5 to 2.9 kV
 - 100 V steps from 2.9 to 30 kV
- Transmission Electron microscopy (TEM) performed at Texas A&M University

CFD Model Geometry of Carbon Capture Device

Total length is 4m with the porous region being 1.5m
Middle transparent region is porous

Simplified Geometry & Meshing of Carbon Capture Device

- The diameter of the pipe is 1.5m
- Approximately 2 million grids were used
 - There are 5 times finer grids in the porous domain than the two other regions

SEM-TEM Results

XRD Results

Their typical series of peaks occurs at $2\theta = 9.6$, 25.2, 38.0, 48.2, 62.0 degrees, representing various types of nanotubes H₂Ti₃O₇, H₂Ti₄O₉, anatase and rutile developed after hydrothermal treatment.

PEI-PTNTs (130°C,140°C and 150°C) Adsorption Capacity (mg/g)

Pressure Contours

- The pressure contour is for a case of 50% porosity
- Contour 1&2 represents before entering and after exiting the porous region
- Pressure drops at the exit of the porous region

Average Pressure Difference between Contours at different porosities

- **Pressure difference increases** as the porosity decreases
- Up to 60% porosity, the pressure drop is negligible
- **Pressure drop is increased sharply below 60% porosity**

Conclusions

- SEM and TEM characterized scattered and overlapped PTNTs and PEI-PTNTs as tubular nanostructures for 130°C and 140°C
- Both ends of the nanotubes are open. The outside diameter of nanotubes were observed to be between 6-8 nanometers (nm) with length of 200-400 nanometers (nm) as confirmed through FE-SEM and TEM
- The XRD characterizations discovered that no remarkable peak shift happened before and after PEI impregnation
- Steady CO₂ adsorption is observed with the PEI-PTNTS samples
- Pressure contour has been expressed for solid porous materials used in CO₂ capture

Future Studies

- Optimize PTNTs from the hydrothermal process
- Develop other PEI varied adsorbents using different molecular weights of PEI
- **Porosity measurements** will be taken of samples
- Pressure drop within the carbon capture device will be calculated with further decrease in porosity and with grid refinement

Acknowledgements

- This work is supported by the Department of Energy, National Energy Technology Laboratory Grant, DE-FE0023040 and partially by
- Some of the personnel are supported through The National Science Foundation (NSF) through the Center for Energy and Environmental Sustainability (CEES) a NSF CREST Center, Award #1036593
- The Investigators would like to thank
 - Texas A&M Imaging Center
 - Dr. Hylton McWhinney and Mr. Tony Grady; Department of Chemistry, Prairie View A&M University

Ouestions?

