

Predicting the Oxidation/Corrosion Performance of Structural Alloys in Supercritical CO₂

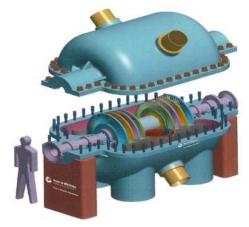
DE-FE0024120

J. Shingledecker (PI), S. Kung (presenter), D. Thimsen
– EPRI

B. Tossey - DNV-GL

I. Wright - WrightHT

A. Sabau - ORNL


2016 Crosscutting Research & Rare Earth Elements
Portfolios Review

April 18, 2016

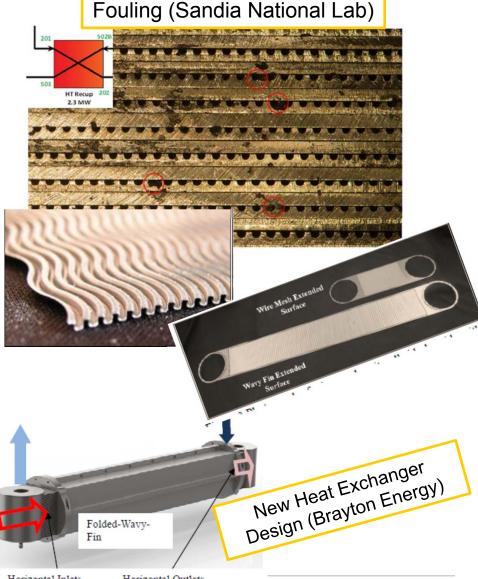
Project Objectives

- Overall Objective
 - Predict the oxidation/corrosion performance of structural alloys in high-temperature highpressure supercritical CO₂ (sCO₂)
 - Combine laboratory testing & computational modeling including unique attributes of sCO₂ heat exchangers to accomplish this goal
- Materials for sCO₂ help enable US DOE program goals for Future Transformational Power Systems

sCO₂ Power Turbine (676 MW)

Graphics by Aerojet Rocketdyne, used with permission

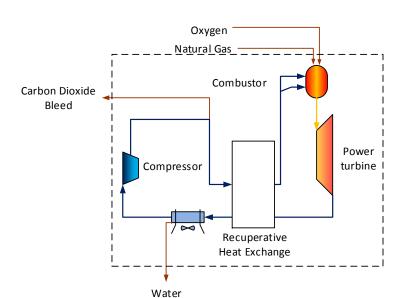
Some configurations of the sCO₂ Brayton power cycle might achieve 100% carbon dioxide capture and zero emissions of conventional pollutants with little or no efficiency or capacity penalty.


Technology Challenges for sCO₂

Expensive HX: '40% of plant cost'

- Small channels
- Large surface areas
- Materials considerations: thermal fatigue, creep (thin sections), brazing/diffusion bonding, corrosion/oxidation/carburization

Corrosion:


- Closed cycle = build-up of impurities
- Open cycle = combustion products
- Long-term performance, pluggage, blockage, etc.

Compact Heat Exchanger

Realistic sCO₂ conditions for semi-open Allam cycles

- Survey of industry and current studies
 - 700°C likely maximum temperature in heatexchangers
- Evaluation of impurities for nearest-term 'open/direct-fired cycle' – Allam Cycle
 - $-H_2O, O_2, N_2, Ar, NO_x, SO_x, HCI$
 - Mass-balance calculations for methane and cooled, raw syngas (checked against thermodynamic calculations)

	Composition (mol%)				
Species	Methane	Cooled raw	0		
		coal syngas	Oxygen		
CH₄	100	1.0			
CO		39.0			
H ₂		28.3			
CO ₂		8.0			
H ₂ O		20.0			
N ₂ +Ar		2.0	0.5		
H2S		0.9			
HCl		0.02			
02			99.5		
LHV	912 BTU/scf	218 BTU/scf			

	Component	Composition (mol%)			
	Fuel	Methane		Cooled Raw Coal Syngas	
	Stream	Combustor	Turbine	Combustor	Turbine
	Stream	Inlet	Inlet	inlet	Inlet
	CO_2	95	90	90	85
	H ₂ O	250 ppm	5	250 ppm	5
	N ₂ +Ar	1	1	9	9
	02	4	3.6	1	1
Ī	HCl				100 ppm
	SO ₂				1,000 ppm

 $O_2 = 3.6 \text{ vol\%}, H_2O = 5.3 \text{ vol\%}$

Scope of Laboratory sCO₂ Corrosion Tests

Conditions

- 650-750°C, 200 bar
- -sCO₂
 - Commercially pure
 - Simulated open cycle with impurities (O₂ + H₂O) from NG

Materials

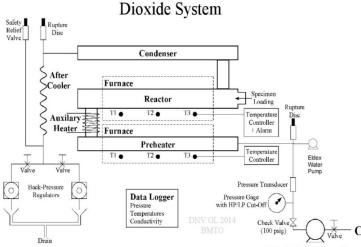
- Commercially available
- Code approved or Industrially relevant
- Focus on economics

Exposures

- 300 hours (Gr 91, 304H, 740H), 700°C
- 1,000 hours (all 7 alloys), 3 temperatures
- ≥3,000 hours (all 7 alloys), 1 temperature

Material Class	Alloys Selected			
Ferritic steels	Gr. 91 (8- 9Cr)	VM12 (11-12Cr)	Crofer 22H (22Cr)	
Austenitic stainless	304H (18Cr)	HR3C (25Cr)		
Nickel- based	617 (20Cr, solid soln)	740H (25Cr, ppt. strengthnd)		

Compositions of alloys investigated


	T91	VM12	Crofer 22H	304H	HR3C	617	740H
Al	0.01	0.01	0.01	<0.01	0.01	1.13	1.33
В	0.002	0.004	<0.001	0.001	0.001	0.002	0.001
Ce	-	-	-	<0.01	<0.01	<0.01	<0.01
Ca	<0.01	<0.01	<0.01	-	-	-	-
Со	0.02	1.47	0.02	0.22	0.08	11.44	20.28
Cr	8.39	11.2	22.71	18.42	25.13	22.19	24.53
Cu	0.09	0.08	0.01	0.18	0.03	0.03	0.01
Fe	_	-	-	70.33	52.39	1.55	0.12
La	<0.01	<0.01	0.06	-	-	-	-
Mn	0.44	0.39	0.43	1.8	1.19	0.09	0.26
Мо	0.93	0.36	0.01	0.22	0.1	9.5	0.32
Nb	0.06	0.03	0.5	0.01	0.44	0.06	1.49
Ni	0.13	0.36	0.26	8.13	19.85	53.31	50.04
Р	0.014	0.015	0.018	0.028	0.015	<0.002	<0.002
Si	0.24	0.41	0.29	0.48	0.4	0.08	0.15
Sn	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Та	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ti	<0.01	<0.01	0.08	<0.01	<0.01	0.35	1.36
V	0.18	0.2	0.02	0.05	0.05	0.03	0.01
W	0.15	1.6	1.9	0.01	<0.01	0.13	<0.01
Zr	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02
As	0.0038	0.0029	0.0019	0.0025	0.0021	0.0002	<0.0001
Bi	<0.00001	<0.00001	<0.00001	0.0008	0.00006	0.00007	0.00017
Pb	0.00005	<0.00001	0.00007	-	-	-	-
Sb	0.00077	0.00041	0.0001	-	_	-	-
С	0.08	0.12	0.004	0.043	0.066	0.091	0.024
S	0.001	0.001	0.002	0.002	0.001	<0.001	0.002
0	0.0032	0.0037	0.0032	0.0032	0.0016	0.0005	0.0006
N	0.0447	0.0359	0.017	0.0604	0.238	0.0065	0.004

Laboratory Testing Facility (DNV-GL)

- High temperature and pressure (600-750°C, 200 bar)
- Existing test facility modified for sCO₂ to ensure safety
- Introduction of impurities (O₂, H₂O)
- 300-hour tests in sCO₂ with and without impurities completed successfully at 700°C
- Two 1000-hour tests completed at 650 and 700°C

Supercritical Carbon

Preheater
Preheater
Out
High Temp Furnace
Haynes 230 Pressure Tube
Sample Insertion (2" OD)

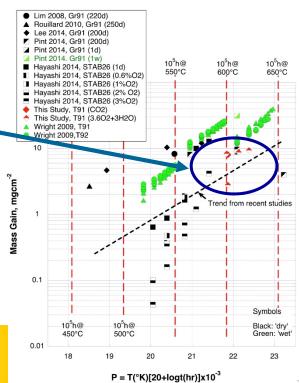
Gas Volume: 4.41 liters

Refresh Rate: static, with occasional

replenishment

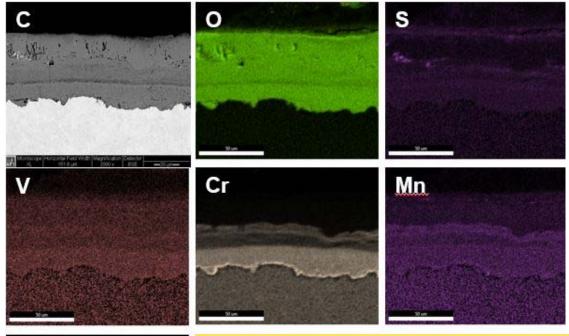
Temperatures: preheat 454°C. exit 149°C

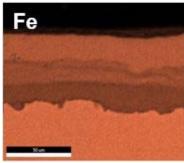
Carbon dioxide supply


High Pressure Pump

Comparison of Mass gain in sCO₂ and steam

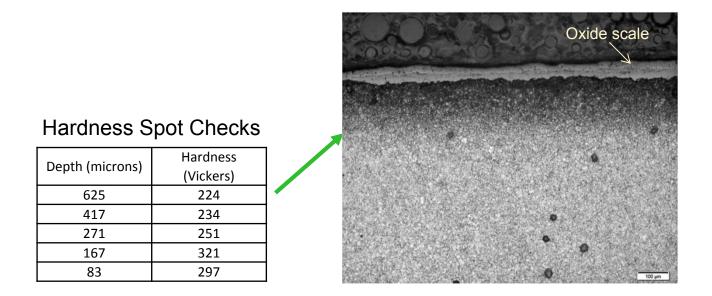
- Results from 300-hour test in pure sCO₂, 700°C, 200 bar Mass gains are similar to results in steam and other studies in sCO₂
- However, mass gain is not useful for evaluating oxide morphology and propensity for exfoliation


Sample	Sample	Weight gain			
ID	#	mg	mg/cm ²		
T91	1	124.57	7.66		
	2	143.47	8.82		
	3	124.17	7.63		
TP304H	1	4.53	0.28		
	2	2.77	0.17		
	3	3.97	0.24		
740	1	3.13	0.19		
	2	3.47	0.21		
	3	3.80	0.23		

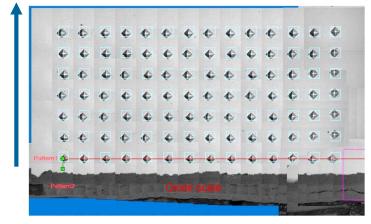

300-hr mass gain data are consistent with assembled literature steam data

RESEARCH INSTITUTE

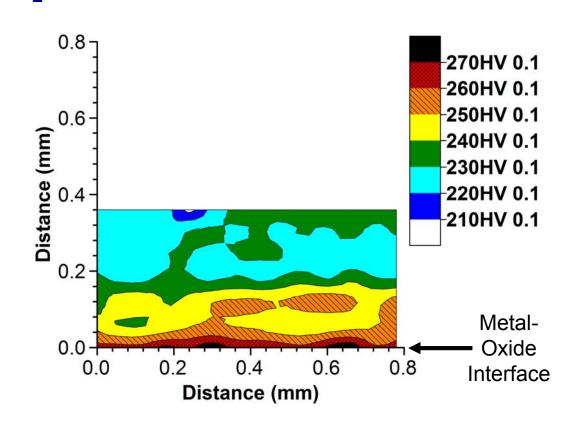
Oxide Morphology of Grade 91 after 300 hour test in <u>pure</u> CO₂ at 200 bar, 700°C



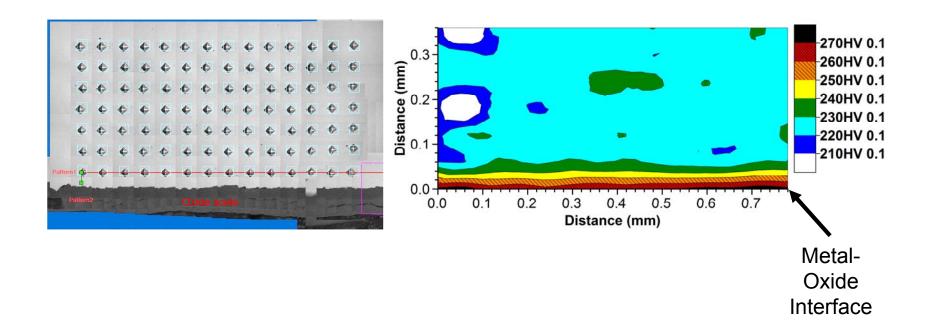
- Overall multi-layered scale structure, but
- 'Intermediate layers' present between expected L1 & L2
- 'Outer' intermediate layer contains Cr (level lower than in L1)


Surface decoration on Gr 91 after 300 hour in <u>pure</u> sCO₂ at 200 bar, 700°C

- Decoration of etched Gr 91 microstructure
- Initial spot hardness measurements for carburization inconclusive
- More detailed characterization performed

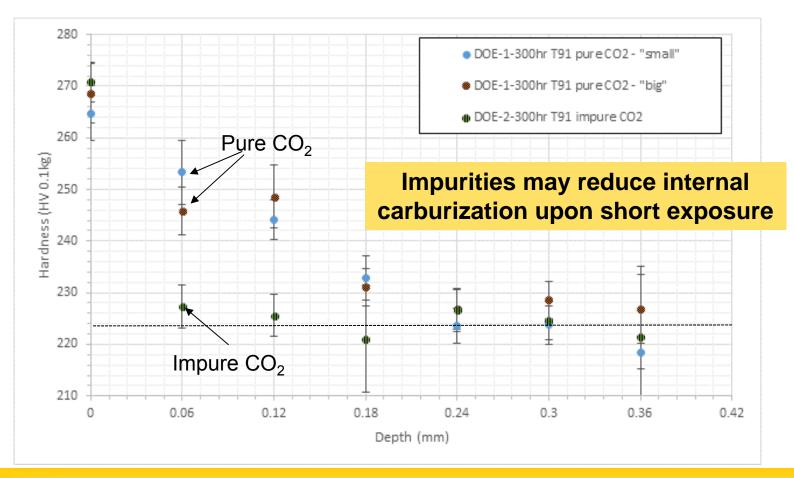


Carburization on Gr 91 evident from micro-hardness measurements in <u>pure</u> sCO₂ after 300 hour at 200 bar, 700°C



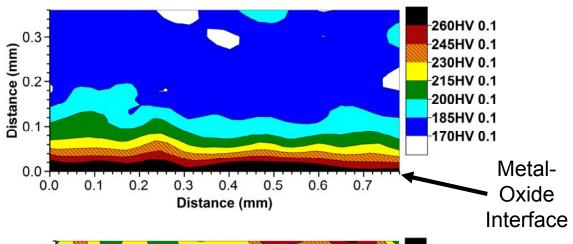
Hardness Map: 14x7=98indents

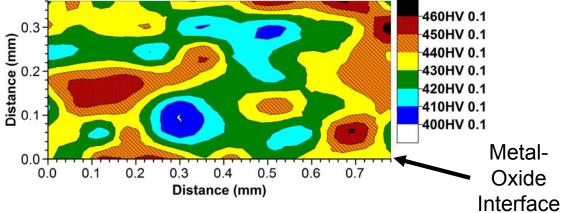
Automated hardness map shows hardening nearsurface region


Hardness on Gr 91 after 300 hour test in impure sCO_2 (3.6% O_2 , 5.3% H_2O) at 200 bar, 700°C

Behavior appears to have some dependence on impurity content of sCO₂

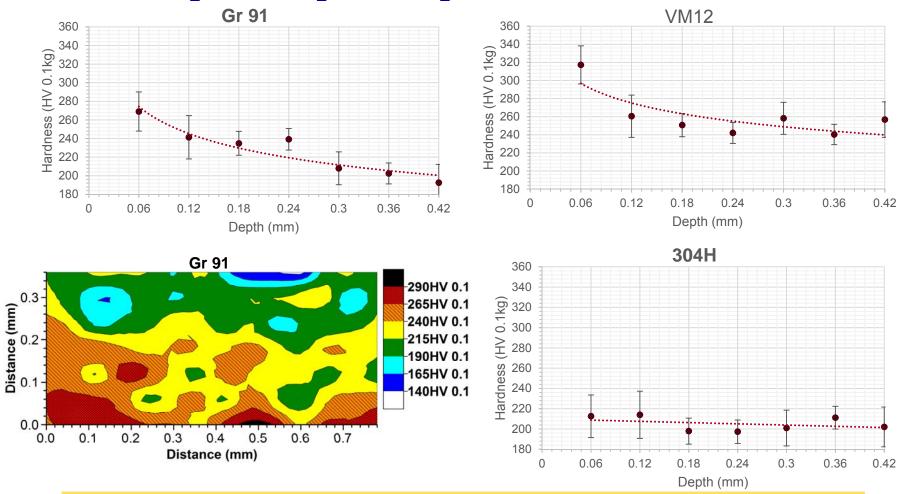
Hardness Profiles on Gr 91 after 300 hour test in pure and impure sCO₂ at 200 bar, 700°C


- Carburization depth >200 µm after 300 hours
- Would it lead to early breakaway corrosion?

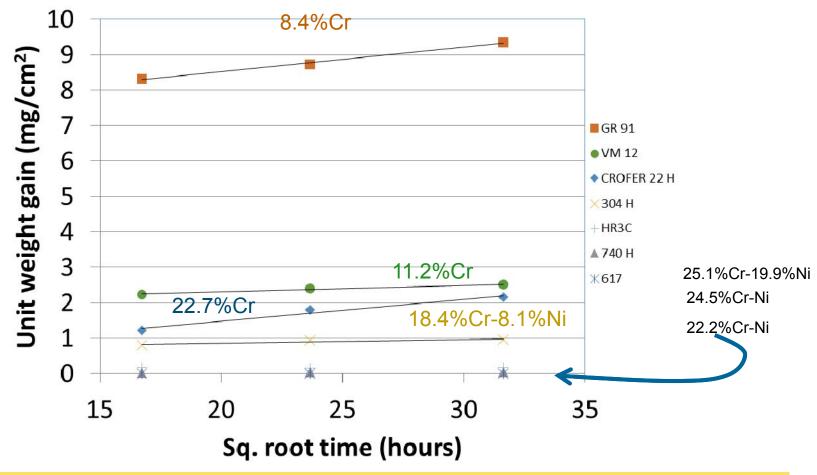

Hardness on 304H and 740H after 300-hour test in impure sCO_2 (3.6% O_2 , 5.3% H_2O) at 200 bar, 700°C

Stainless Steel 304H

304H shows some hardness increase near the alloy surface – need to evaluate further (sample prep, carburization, other)

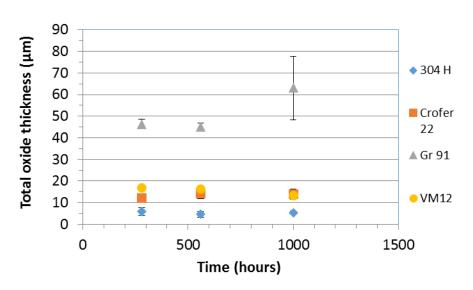

Nickel-Base Alloy 740H

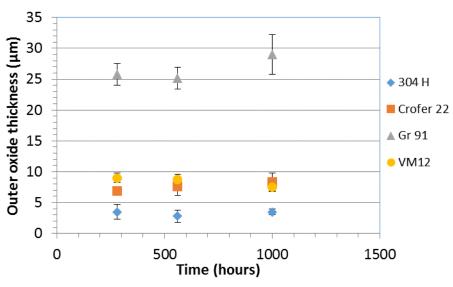
RESEARCH INSTITUTE


740H shows no evidence of change in surface hardness with sCO₂ exposure

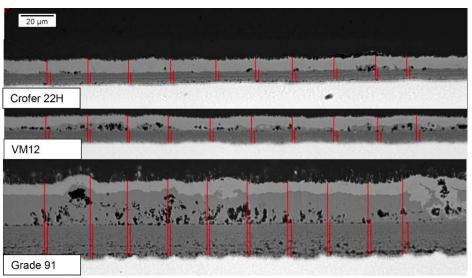
Hardness on Gr 91, VM12 and 304H after 1000-hour test in impure sCO_2 (3.6% O_2 , 5.3% H_2O) at 200 bar, 700°C

- Ferritic Gr 91 and VM12 exhibit increased hardness near surface
- Stainless steel and Ni-base alloys show no (or negligible) sign of carburization


Mass Gain from 1000-hour test in impure sCO_2 (3.6% O_2 , 5.3% H_2O) at 200 bar, 700°C

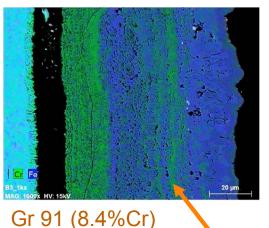


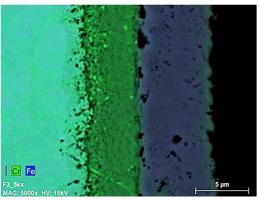
- Mass gains trend with alloy chromium content for Fe-based alloys
- 304H stainless steel has higher mass gain than HR3C
- Mass gains for HR3C, 617, and 740H are low and comparable


Comparison of scale thickness for ferritics and 304H

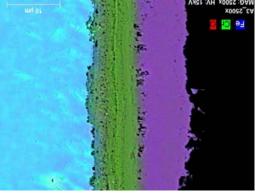
1,000-hour test in impure sCO₂ (3.6% O₂, 5.3% H₂O) at 200 bar, 700°C

- All ferritic alloys form duplex scale structure at 700°C, even with ~23%Cr
- No exfoliation observed (yet)
 - EPRI models for steam predict exfoliation from Gr.91 at 200 to 400 microns total oxide thickness

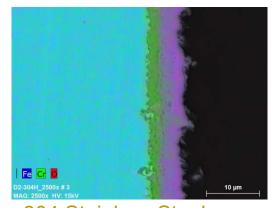




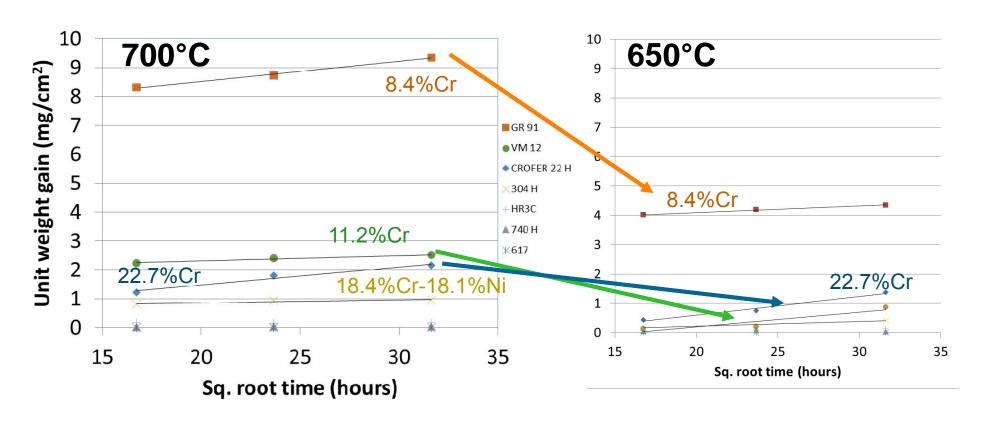
Comparison of scale morphology for ferritics and 304H


1,000-hour test in impure sCO₂ (3.6% O₂, 5.3% H₂O) at 200 bar, 700°C

EDS Fe-Cr or Fe-Cr-O Maps Overlayed on SEM Images


VM12 (11.2%Cr)

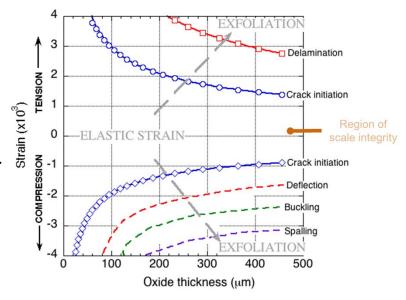
Crofer 22H (22.7%Cr)

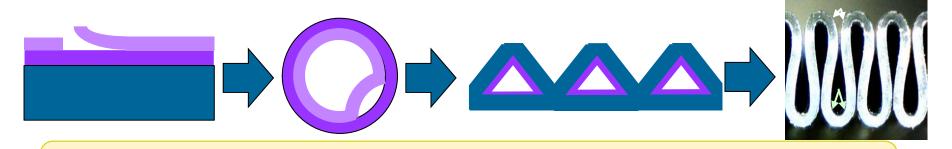

Outer oxides are Fe-based

- Gr. 91 continued to show intermediate layer(s) showing Cr & Fe striations
- With exception of Gr. 91, oxide morphologies appear similar to those in steam
- No exfoliation observed, but
 - outer Fe-oxide (L2) growing on all alloys suggests eventual exfoliation
 - Voids already forming on L1/L2 interfaces on ferritic alloys--these are typical locations for scale failure

304 Stainless Steel: 18.4%Cr-18.1%Ni

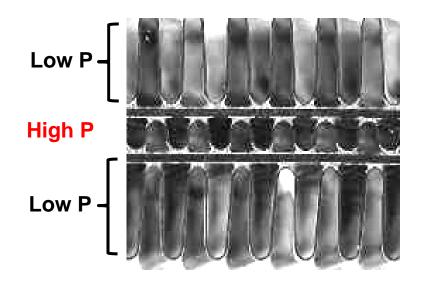
Recent Data: Mass gain from 1000-hour test in impure sCO₂ (3.6% O₂, 5.3% H₂O) at 200 bar, 700°C versus 650°C

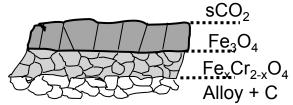

Similar trends at 650°C to 700°C


- Weight gain reduced by ½ with 50°C reduction in temperature
- VM12 and Crofer 22H ranking inconsistent between tests
- Oxide scales being characterized

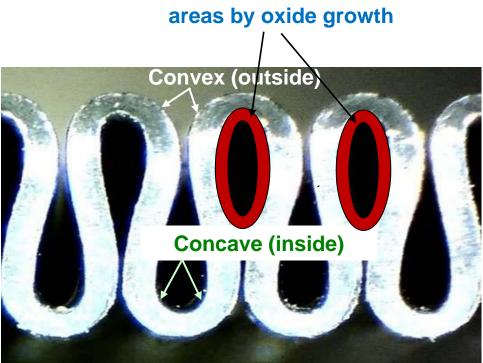
Unique modeling consideration for oxide growth and exfoliation in small channel heat-exchangers

- Lab studies: isothermal oxide growth on flat coupons
- Real world: heat-flux, stress from complex geometries
- Modeling:
 - EPRI-developed strain trajectory approach for steam tubes
 - Properties of sCO₂ and alloys collected
 - Discussion with OEMs on convex vs. concave surfaces – need to develop a generic modeling approach





Complex HX Design envisioned for sCO₂ Brayton cycles


Loss of flow channel areas from scale formation

Maximum allowable thickness of the total oxide scale limited by:

- Metal thickness
- · Channel opening

Reduction in flow channel

Metal thickness: 0.2 mm

Oxidation and carburization may significantly impact on HX efficiency and mechanical integrity

Project Test Matrix Progress

Description Conditions (Purpose)		Test Status	Characterization
Rig Commissioning	Temperature monitoring & pressure	Complete	100%
Short-term	700°C-300hr-Pure	Complete	100%
(compare to literature, impurity introduction)	700°C-300hr-Impure	Complete	100%
Test Program	700°C-1,000hr-Impure	Complete	Ongoing: ~300,
(develop oxide thickness kinetics	650°C-1,000hr-Impure	Complete	700, 1,000hr: mass gain, oxide
and propensity for exfoliation)	750°C-1,000hr-Impure	Ongoing	thickness, morphology
Long-Term (Validate Models and test unique geometries)	700°C-3,000+hr-Impure	Discussions with vendors to test actual components	

Summary

- First project to address oxidation in open sCO₂ Allam cycle
 - Impurity concentrations have been determined via mass balance and thermodynamic calculations
- A new test rig assembled, and 300-hour laboratory tests with and without impurities completed
 - 1,000-hour tests are progressing at 650-750°C
- Although mass gains for alloys in sCO₂ and steam are similar, some differences in scale morphology on Gr.91
 - Intermediate layer between L1 & L2 with Cr striations
 - Carburization identified on ferritics using hardness mapping; appears more severe in pure sCO₂
- Effect of sCO₂ and geometry on oxidation to be evaluated through modeling

Acknowledgements

This work is sponsored by the DOE Office of Fossil Energy Cross-Cutting Materials Research Program: **DE-FE0024120**

Project Manager: Vito Cedro

Together...Shaping the Future of Electricity