Corrosion Issues in Advanced Coal-Fired Boilers

B. A. Pint

Corrosion Science and Technology Group Oak Ridge National Laboratory Oak Ridge, TN 37831-6156

Research sponsored by the U.S. Dept. of Energy, Fossil Energy Advanced Research Materials Program (V. Cedro project monitor)

Acknowledgments

ORNL

- G. Garner, T. Lowe, M. Stephens, M. Howell,
 - Z. Burns oxidation experiments
- T. Jordan metallography
- T. Lowe SEM, image analysis
- D. Leonard EPMA
- S. Shipilov, A. Willoughby water loop

Fossil energy continues to dominate Source mix is changing & demand is stagnant

How does US generate electricity?

FY15-16: science approach to "real world" corrosion issues

- 1) Steam oxidation
 - study of shot-peening "solution"

- 2) H-induced stress corrosion cracking
 - 2.25%Cr waterwall steels: Grades 22,23,24
 - significant problem in new boilers
 - need for more detailed understanding

- 3) Effect of pressure on corrosion
 - relevant for steam oxidation (lab. vs. field)
 - SPOC: staged pressurized oxy-combustion (FEAA120 subcontract with Wash.U@StL)

John W. Turk Plant (2013) solution "Ultra-supercritical" coal-fired steam plant by B&W/AEP

Fulton, Arkansas 600 MW 2013 commission ~40% LHV efficiency \$1.8 billion (\$2.8b?)

Turk (2013): 599°/607°C SH/RH 25.3MPa (1110/1125°F) Eddystone (1960): 613°C/34.5MPa (1135°F/5000psi)

Turk superheater tubes: shot-peened 347H Fe-17.5Cr-10Ni-0.5Nb-1.5Mn-0.4Si-0.07C Task 1: Why shot peening? Exfoliation problem is a main driver for research H₂O-accelerated oxidation of steels (steam-side) Simultaneous spallation of thick oxide Tube failures & erosion damage Cost: planned/unplanned shutdowns, mitigation

Source: EPRI

Shot peening of austenitic tubes Reduced scale growth: avoids exfoliation issue Limited understanding of benefit and procedure Ex: How do oxide nodules evolve at 600°-650°C?

Alloy oxidation specimens exposed ~1.5x10x20mm in most cases

1bar steam

Atomized deionized water (no carrier gas) H₂O: ~0.065µS/cm, filtered, deaerated Temperature: 550°-650°C Time: 500h cycles

17bar steam testing H₂O: ~0.065µS/cm, filtered, deaerated, deionized Temperature: 550°-900°C Time: 500h cycles

Shot peening hardness profiles Required 1100°C solution annealing of bend

304H tube from an EPRI partner: No hardness difference remained in the bend after annealing at 1100°C Completed 13kh of exposures 600°,625°,650°C 1bar steam; 500-h cycles Shot peened coupons: commercial 304H from a utility

Shot peened coupons: tube sections reduced wall thickness Polished alloy coupons: comparison

Alloy coupons stopped at 10,000h

Shot peened coupons: commercial 304H from a utility

10,000 h 625°C steam

Series of SP specimens exposed Oxide thickness measurements from polished sections

commercial shot-peened 304H

"Cut" face grows thick oxide

Oxide thickness measurements from polished sections

Similar benefit on machined OD

Oxide thickness measurements from polished sections

600°-625°C

- thin ID oxide
- similar thin OD oxide

Losing benefit at 650°C ?

Oxide thickness measurements from polished sections

Previous: high Cr depletion beneath scale Shot peened TP304H: 24,500 h, 538°C steam (EPRI)

Models: 10-15%Cr is susceptible to form FeO_x Higher Cr depletion here: unstable situation - any disruption in Cr-rich oxide likely to grow nodule

Wrapping up Task 1

- Last SP specimens running stop at 15,000 h
- Second SP tube obtained specimens running to 7,500 h
- 2nd set alloy specimens running to 10,000 h
- More characterization improved image statistics hardness vs. time at temp. Cr depletion (EPMA)

Task 2: stress corrosion cracking

- 2.25%Cr waterwall steels: Grades 22,23,24 high strength steels susceptible
- significant problem for new boilers
- Stress-environment interaction: 25°-300°C
- Jones test to apply stress (complicated)
- prior results in aerated and deaerated water

Water loop: next level of testing Simulate actual fossil environments and controlled pO₂ levels

water control systembased on GE systems

200°C autoclave

Qualitatively: O affects cracking Example: 304SS from nuclear industry

Source: B. M. Gordon 1986 ANS Proc. Operab. Nucl. Power Syst. in Normal & Adverse Env.

Current & Future SCC Testing

FY14: Grade 315 9(3Cr) also susceptible

FY15: loop under construction

FY16:

- testing at 150ppb O₂ ("oxygenated" water)
- second O_2 level based on 1st results

Future:

More precise crack growth monitoring Are there critical temperature and hardness values for susceptibility?

Are there solutions for Grades 23 and 24?

Task 3: effect of pressure

- steam oxidation field-lab disconnect field (high pressure) ≠ lab (typically 1 bar)
- what is the effect of pressure? need uniform test procedure

Saunders 2006 MSF, etc. P92, 1000h, 600°-650°C

Fry 2006 MHT T92, 600°C, "steam"

Initial results in 550°C steam 5,000 h exposures (10 x 500-h cycles)

Higher mass gain in 1 bar steam oxygen contamination (?)Two tests in two different test rigs what did we learn?

Interest in P effect for SPOC Staged-Pressurized Oxy-Combustion (Pressure effect on fireside)

Project led by Washington University (St. Louis) R. Axelbaum and B. Kumfer

Initial ORNL study of pressure FEAA120: SPOC materials study: 500h

600°C 1 bar $90\%O_2-10\%H_2O$ (OH) 17 bar $90\%O_2-10\%H_2O$ 1 bar $90\%O_2-10\%H_2O-0.1\%SO_2$ (OS) 17 bar $90\%O_2-10\%H_2O-0.1\%SO_2$

Initial ORNL study of pressure VM12: ~11Cr-1.5Co-1.5W steel

Summary

Corrosion task addressing "real-world" issues

- 1. Quantify shot-peening benefit on 304H
 - completed 10 kh specimens
- 2. SCC issue in current waterwalls
 - next step is testing in water loop
- 3. Effect of pressure
 - 1st exposure: 550°C steam
 - 2nd project for SPOC

Future possibilities:

- Corrosion issues with dry cooling (?)

H₂O drives steels crazy Steam or exhaust gas accelerate oxidation

Laboratory air - thin, Cr-rich oxide + H₂O - thick, Fe-rich oxide

Specimen type showed minor effects peened 304H 650°C 17bar steam 4,000h

Peened ID: no effect of specimen geometry OD difference: as-received vs. machined (thin ring) - cold work due to machining similar to peen-

Phase 1: smaller mass changes for Ni-base alloys at 800°C

Side-by-side reaction tubes: 1 + 17bar, $90\%O_2-10H_2O$

Specimens

Ultimate goal is to marry Oxy + A-USC "least regret" CO₂ strategy: higher efficiency A-USC: 760°C (1400°F) + 34.5 MPa (5000psi) (Advanced ultra-supercritical)

History: 1960 - the year progress stood still Eddystone (1960): 654°C/36.5MPa (1210°F/5300psi) settled for 613°C/34.5MPa (1135°F/5000psi)

Turk (2013): 599°/607°C SH/RH 25.3MPa (1110/1125F)

Prior work with EPRI

Characterizing field exposed shot-peened tubes

Range of commercial & model alloys

measured by inductively coupled plasma analysis and combustion analysis

Alloy chemical compositions (weight %)											
Alloy	UNS#	Fe	Cr	Ni	Мо	W	Mn	Si	С	Ν	Other
Gr.22 Gr.33	K21590	95.5	2.3	0.2	0.9	<	0.6	0.1	0.14	0.01	0.2Cu
Gr.91 SAVE12	S90901	89.7 <mark>83.4</mark>	8.3 <mark>9.6</mark>	0.1 <mark>0.3</mark>	0.9 <mark>0.05</mark>	0.01 <mark>3.0</mark>	0.3 <mark>0.4</mark>	0.1 <mark>0.1</mark>	0.08 <mark>0.11</mark>	0.05 <mark>0.01</mark>	0.3V,0.07Nb 2.6Co,0.3V
<mark>304H</mark> Super304H 347HFG	<mark>S30409</mark> S30410	<mark>69.7</mark> 68.0 66.0	<mark>18.9</mark> 19.0 18.6	<mark>8.5</mark> 8.9 11.8	<mark>0.3</mark> 0.1 0.2	<mark>0.04</mark> < 0.02	<mark>1.0</mark> 0.4 1.5	<mark>1.1</mark> 0.1 0.4	<mark>0.05</mark> 0.08 0.09	<mark>0.02</mark> 0.11 0.06	0.3Cu,0.1Co 2.9Cu,0.1Co 0.8Nb,0.2Co,0.2Cu
310HCbN 800H SAVE25 SANICRO25 HR120 HR6W	S31042	51.4 43.2 51.5 42.6 35.0 23.3	25.5 19.7 22.3 22.5 24.7 23.4	20.3 33.8 20.0 25.4 37.6 44.6	0.1 0.2 0.1 0.2 0.3 0.2	0.01 0.02 1.0 3.4 0.05 6.3	1.2 1.0 0.7 0.5 0.7 1.0	0.3 0.2 0.2 0.2 0.2 0.2 0.2	0.05 0.08 0.07 0.06 0.06 0.07	0.27 0.01 0.22 0.21 0.21 0.21 0.01	0.4Nb 0.7Al,0.5Ti,0.3Cu 3.4Cu,0.3Nb,0.2Co 2.9Cu,0.5Nb,1.4Co 0.6Nb,0.2Cu,0.1Al 0.4Co,0.2Nb,0.1Ti
<mark>740</mark> 617(CCA) 282	<mark>N07740</mark> N06617 N07208	<mark>1.9</mark> 0.6 0.2	<mark>23.4</mark> 21.6 19.3	<mark>48.2</mark> 55.9 58.0	<mark>0.5</mark> 8.6 8.3	0.09	<mark>0.3</mark> 0.02 0.1	<mark>0.5</mark> 0.12 0.1	<mark>0.08</mark> 0.05 0.06	<mark>0.01</mark> 0.01 0.01	20Co,2Nb,2Ti 11Co,1.3Al,0.4Ti 10Co,1.5Al,2.2Ti
Fe-15Cr Fe-20Cr Fe-25Cr Fe-30Cr Fe-40Cr		85.1 80.3 74.6 69.7 59.6	14.8 19.7 25.3 30.2 40.2	< < < 0.01	<pre></pre>	< < 0.01 < <	<pre></pre>	< 0.01 0.02 0.02 0.09	<pre></pre>	< < < < <	

Ni-(18-22)Cr additions of 0-2%Al, 0-2%Ti, 0-20%Co, 0-8%Mo

< indicates below the detectability limit of <0.01%