Weldability of Creep-Resistant Alloys for Advanced Fossil Power Plants

Xinghua Yu, Zhili Feng (PI)
Oak Ridge National Laboratory
Wei Zhang, Yanfei Gao
University of Tennessee, Knoxville
Project Goal and Technical Scope

• Develop the capability of Integrated Computational Welding Engineering model to predict creep deformation and failure in welded structures of Creep Strength Enhanced Ferritic (CSEF) Steels
 – Develop an engineering approach to quickly assess weld creep performance based on experimental data (Level 1 model)
 – Develop microstructure-based ICWE model for CSEF steels weld creep performance prediction (Level 2 model)
 – Use advanced experimental testing techniques to validate and refine the model
Modeling of Microstructure & Properties

High-fidelity microstructure modeling provides insight into microstructure evolution and property heterogeneity of welds

Monte Carlo simulation of grain growth

Phase field simulation of solidification

Yield strength gradient simulation in a multi-pass steel weld

Simulation of HAZ softening of a boron steel top: simulation; bottom: measurement

Performance simulation of a high strength steel weld
Integrated Modeling Approach for Weld Creep Performance

Process Model (Heat Treatment and Welding)

Temperature Distribution

Stress Distribution (Residual Stress)

Macro Service Stress Environmental Effect

Microstructure Model (precipitates size, fraction, martensite boundaries fraction)

Microstructure Characterization

Special Designed Experiment

Weld Creep Performance

Structural Performance Model (creep rate, creep damage)

Long-Term Reliability (>30 years)

Modify pre-existing process model
Model Needs Integrated Multi-scale Modeling Techniques

• Need to Integrate multi-physics and multi-scale weld modeling framework for welding process and structural performance simulations

• Some mechanisms and theories are still not clear and under development

• Materials properties need to be measured as model input or for model validation. It involves significant amount of experimental works.

• Is there a quick way to access weld performance?
Integrated Modeling Approach

- Process Model (Heat Treatment and Welding)
 - Temperature Distribution
 - Stress Distribution (Residual Stress)
 - Macro Service Stress Environmental Effect
 - Advanced Microstructure Characterization
 - Special Design Experiment
 - Long-Term Reliability (>30 years)
 - Microstructure Model (precipitates size, fraction, martensite boundaries fraction)
 - Structural Performance Model (creep rate, creep damage)
 - Weld Creep Performance
 - Level 1 Model
Level 1 Model Overview

- Digital Image Correlation (DIC) based mechanical properties measurement
- High temperature stress-strain, Young’s modulus
- High temperature Creep strain evolution
- Measured properties or behavior can be fitted to constitutive equations or used as direct input in finite element models.

Weld Joint Strength Reduction Factors (WSRF = $\sigma_{\text{weld}} / \sigma_{\text{base metal}}$) for CSFE steels can be as low as 0.5 at ~600°C.
Creep Strain Distribution after 90 Hours

Standard heat treatment (1040/760/760), expected creep life:~500h

Modified heat treatment (1040/650/760), expected creep life:~2500h

- Standard heat treatment: 70MPa @ 650C
- Modified heat treatment: 70MPa @ 650C
Creep Strain Evolution in Different Regions
Polynomial curve fitting

Will evaluate other continuum creep models, including MPC Omega, Theta, and Sin-Hyperbolic Models
FEA model

• Initial feasibly demonstration of ICWE model to capture local creep deformation and failure in a representative cross weld tensile specimen

![Figure 1. Maximum in-plane creep strain in a cross-weld specimen after 13000 hours creep. (CE is in-plane principal creep strain)](image)

• Further develop and refine the creep testing technique. Design new sample geometry for creep-microstructure correlation.
Minimum Creep Rate in Cross-Weld Creep Testing

Monkman-Grant relationship

$$\dot{\varepsilon}_{ss} t_R = C_{MG}$$
Level 1 Model Summary

• Level 1 model is based on experimental data and for weld performance assessment. It is more engineering approach than scientific approach.

• Measured local minimum creep rate can be used to predict creep life.

• A Long-term weld creep model should consider the fundamentals of creep deformation, damage and failure and should be microstructure-based.

• Level 2 model will be developed considering microstructure evolution and creep deformation mechanism.
Strain-Microstructure Correlation

Coarse carbides in “standard” weld and fine carbides in “modified” weld
What are the key microstructure features for creep deformation?

How does these key features affect creep properties?
Previous Study on Grade 91 Show Dispersion of Fine Carbides is the Key

Carbide size, distribution, coarsening kinetics are very important microstructure features.

Microstructure gradient (carbides, martensite substructure size) is also important for weldments.
Structural Performance Model Needs to Consider Both Power-Law Creep and Coble Creep

- **Microstructure Model**
 - (precipitates size, fraction, martensite boundaries fraction)

- **Structural Performance Model**
 - (creep rate, creep damage)

![Diagram showing deformation mechanism map]
Representative Volume Element Model

Coble Creep applied at grain boundaries

Power law creep applied at grain interior (including precipitate strengthening)

Constitutive creep law obtained from RVE model

Coupon level

Structural Component
Power Law Creep and Coble Creep

Power Law Creep of Alloy with Secondary Phase

\[\frac{\dot{\varepsilon}_m kT}{DE_b} = A_{D_{ls}} \left(\frac{\sigma_a - \sigma_{th}}{E} \right)^n, \]

Threshold Stress
Solid Solution Ni-20Cr
Additivity Rule

Coble creep

\[\dot{\varepsilon}_{Coble} = \frac{\alpha \delta D_{gb} \sigma \Omega}{kT d^3} \]

Easier to be activated and grain size dependent

Both mechanism contribute to creep deformation of Grade 91 steels
Level 2 Model Overviews

Microstructure Model
- (precipitates size, fraction, martensite boundaries fraction)

Structural Performance Model
- (creep rate, creep damage)

Weld Creep Performance

Level 2 Model

Advanced Microstructure Characterization

Special Designed Experiment

Long-Term Reliability
- (>30 years)

How to simulate key microstructure features?
Microstructure Simulation

- TC-PRISMA is a general computational tool for simulating kinetics of diffusion controlled multi-particle precipitation process in multi-component and multi-phase alloy systems.
- TC-PRISMA is based on Langer-Schwartz theory and Kampmann-Wagner numerical

Simulation of Carbide Coarsening Process Shows Good Agreement with Experimental

- Only Considered M23C6
- Normalized at 1050°C and tempered at 760°C.
- The predicted precipitate size shows very good agreement for 364 hours.
- For time longer than 1000 hours, the predicted radius is slightly smaller than the experimental result.

Plan to use the same modeling approach to predict carbide in weldments.

Microstructure Model Validation Using Synchrotron X-Ray

Precipitate growth, coarsening and dissolution kinetic will be investigated.
Conclusions

Level 1 model:

• Special designed creep experiment could capture local creep deformation in a representative cross weld tensile.
• Local creep strain rate can be used in creep deformation model.

Level 2 model:

• Established ICWE modeling framework Grade 91 Steel Weld Creep Performance
• Making progress on structural performance model.
• Precipitation simulation showed good agreement with literature results.
Q & A