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Project Overview
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Develop an enabling technology for simultaneous recovery 
of latent heat and removal of SOx and NOx from flue gas 
during pressurized oxy-coal combustion.

Funding

Project Objectives

09/01/2015 - 08/31/2017
Project Performance Dates

Total award: $1,291,964
DOE share: $996,652

Cost share: $295,312

Project Participants
Washington University



Technology Background
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SPOC Steam Cycle
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SOx and NOx Removal Mechanism
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Project Objectives
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• Develop a predictive model for reactor design & operation.

• Experimentally determine critical reactions and rates.

• Conduct parametric study to optimize process.

• Design, build, test prototype for 100 kW pressurized combustor.
• Estimate capital and operating costs of the DCC for a full-scale 

SPOC plant.



Project Organization
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Project Management
Richard Axelbaum

Ben Kumfer

Modeling
Gregory Yablonsky

Oleg Temkin
PhD student

Prototype 
DCC

Ben Kumfer
PhD student

Chemical Mechanisms 
and Kinetics

Experiment
Young-Shin Jun

PhD student

Process 
Modeling

Richard Axelbaum
Zhiwei Yang



Questions
• What is the optimum design for the DCC for pressurized oxy-

combustion?

• What is the expected removal efficiency at the proposed 
operating conditions for SPOC?

• What are the optimal DCC operating & inlet conditions?

o Inlet NOx/SOx ratio 

o pH

o Temperature

• What are the critical and rate limiting reactions?

• Can faster/more efficient capture be achieved using catalysts?

• Is one column sufficient?
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Technical Approach/Project Scope
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Technical Approach
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Schedule
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ID Task Start Date End Date

1 Task 1.0: Project Management & Planning 10/01/15 09/30/17

2 Task 2.0: Assemble & Test Bench-Scale System

3     Subtask 2.1: Purchase Components 10/01/15 03/31/16

4     Subtask 2.2: Conduct Preliminary Tests 12/31/15 09/29/16

5 Task 3.0: Construct Prototype Column

6     Subtask 3.1: Column Design 10/01/15 03/31/16

7     Subtask 3.2: Construction and Installation 03/31/16 09/29/16

8 Task 4.0: Evaluate Prototype Performance  

9     Subtask 4.1: Testing w/ Simulated Flue Gas 10/01/16 04/01/17

10     Subtask 4.2.1: Testing w/ Real Flue Gas 04/01/17 09/30/17

11 Task 5.0: Model Improvement and Validation

12     Subtask 5.1: Bench-Scale Parametric Study 10/01/16 04/01/17

13     Subtask 5.2: Improve Model 10/01/16 07/31/17

14 Task 6.0: Full-Scale Cost & Performance Estimate 01/01/17 10/31/17

Q1 Q2           Q3          Q4           Q1            Q2          Q3           Q4 

b

c

d

g

h

a

e

|                    FY 2016                      |                    FY 2017                    |

f



Knowledge Gaps and Challenges
1. Mechanisms and kinetic parameters of consumption/generation of different NOx-

and SO2-species in the gas phase is well understood. 
 Mechanism for the NO- and SO- containing species in the liquid phase 

remains unclear, and some of the kinetic parameters are highly uncertain. 

2. Literature regarding influence of pH on capture effectiveness is limited and 
sometimes contradictory. Because the pH changes as the reaction occurs, it is 
difficult to predict which mechanism is dominant. 
 To date, experimental systems have not controlled or directly measured the 

experimental pH values. 

3. No systematic studies of the effects of acid-base catalysts, e.g., ion-exchange 
catalysis, on this gas-liquid process have been conducted.

4. Difficult to experimentally measure the concentrations of certain key 
intermediate species. 
 Lack of experimental data on the concentrations of critical species makes it 

challenging to obtain accurate kinetic data for key chemical reactions in such 
high pressure, high temperature systems. 
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Technical Approach:

Mechanism and Kinetics
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Expected Outcomes of Model Development

• New kinetic data on the absorption and conversion reactions 
of NO, NO2, and SO2 under high temperature and pressure 
conditions with controlled pH.
o This will be the first study to conduct experiments under well-

characterized in situ pH conditions. 
o Catalyst performance will be evaluated.

• An experimentally-validated chemical mechanism 

• A simplified but reliable kinetic model with experimentally-
obtained kinetic parameters.

• Recommendations on the optimal working regime, i.e., 
reactant concentrations, temperature and pH.
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Reaction Mechanism & Kinetic Model

 Normann et al proposed a detailed mechanism 
containing 34 reactions. (Intern. J. of Greenhouse Gas Control, V. 12, 
January 2013, pp.26-34.)

• contains many intermediates 
• cannot explain some experimental data in the literature
• kinetic expressions need verification 

 A reduced model has been constructed.
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I. N (nitrogen) -block
1. 2NO (g) + O2(g) ↔ 2NO2 (g)
2. 2NO2(g) ↔N2O4(g)
3. NO(g) + NO2(g) ↔ N2O3(g)
4. 2 NO2 (gaq) + H2O (aq)HNO2 (aq) + HNO3 (aq)
5. N2O4(gaq)+ H2O (aq)HNO2 (aq) + HNO3 (aq)
6. N2O3(gaq) + 2H2O (aq) 2 HNO2 (aq)
7. 3 HNO2 (aq)HNO3 (aq)+ 2 NO (g, aq)+ H2O (aq)

II. S (sulfur) –block
8. SO2 (g) + H2O (g, aq) ↔ HSO3

- (aq) + H+ (aq)

III. S&N -block 
9.  2HNO2 (aq) + H+ (aq)+ HSO3

- (aq) H2O (aq) +2NO (g) + 2H+ (aq) + SO4
2- (aq)  

10.  2HNO2 (aq) + 2H+ (aq)+ 2HSO3
- (aq) H2O (aq) +N2O (g) + 4H+ (aq) + 2SO4

2- (aq)  

Proposed Mechanism
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 NOx in gas phase
• Literature: contradictory statements about whether N2O4 and N2O3

are important,
• Modeling results: NO and NO2 are the major species; [NO2] >>

[N2O4] > [N2O3].
• Gas-phase experimental data will be obtained.

Modeling to guide experiments

19

 Mass transfer limited or kinetically limited
• Literature: contradictory conclusions about which is limiting,
• Modeling: better agreement with experimental data of Ting et al 

obtained when a higher mass transfer coefficient is used 
Rdissolution ≈ Rliquid reaction.

• We can change circulation rate, stirring, and residence time in 
our experiment, to determine which one is limiting.
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 Explain the difference between HNO3 and HNO2
concentration dependencies on pressure (Ting et al)

Modeling to guide experiments

• Modeling results: both concentrations 
increase with pressure.

• Possible reason for the difference in 
acids concentrations: decomposition 
of HNO2 (Reaction 7) 

• Decomposition of HNO2 may need to 
be faster in model.

• In future experiments, possible 
difference in acids concentrations has 
to be analyzed to obtain  more 
accurate kinetic data. Ting et al, 2013



Technical Approach:

CSTR Experiments
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1. Gas inlet and pressure gauge;    2. High pressure/temperature pH electrodes; 
3.   Liquid outlet; and 4. Mechanical stirrer 

In situ pH measurements 
and control under high 
pressure/temperature 

conditions
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Variables Conditions 
Pressure (bar) 15
Temperature (oC) 25
NO concentration 0.9%
O2 gas concentration 8%
Reaction time (min) 10 and 60
Stirring rate (rpm) 1200

Experimental variables used in preliminary tests
Testing NOx Reactions
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Gas Phase
1. 2NO (g) + O2(g)2NO2 (g)
2. 2NO2(g) ↔N2O4(g)
3. NO(g) + NO2(g) →N2O3(g)

Gas + Liquid Phase
4. 2 NO2 (g) + H2O (g, aq) HNO2 (aq) + HNO3 (aq)
5. N2O4(g)+ H2O (g, aq) HNO2 (aq) + HNO3 (aq)
6. N2O3(g) + 2H2O (g, aq) 2 HNO2 (aq)
7. 3 HNO2 (aq)HNO3 (aq)+ 2 NO (g, aq)+ H2O (g, aq)

Input and output gas

Aqueous NO2
-

and NO3
-

concentrations 
and pH 
measurement



Reaction time (min) NO2
- (µM) NO3

- (µM)
10 194.5 121.0
60 257.5 168.7

120 272.6 178.2

In situ pH and ion chromatography-determined NO2
- and 

NO3
- concentration evolution during NOx gas dissolution
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Unique reactor design optimized for conducting experiments up to 
• 325 oC
• 40 bar
• pH = 0
Coupled to in-situ FTIR measurements of aqueous species
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High temperature and pressure FTIR for in situ analysis
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NO2
- peak around 1236 cm-1

Detection limits and calibration 
have been performed for each species



Future plans for Bench scale experiments

• Obtain new kinetic data on the absorption and conversion 
reactions of NO, NO2, and SO2 under high temperature and 
pressure conditions with controlled pH. 
o This will be the first study to conduct experiments under well-

characterized in situ pH conditions. 
o Catalyst performance will be evaluated.

• Experimentally obtain kinetic parameters for validating 
reaction mechanisms and models

• Provide recommendations on the optimal working regime, 
i.e., reactant concentrations, temperature and pH. 
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Accomplishments

• Unique and new capabilities have been developed.
o In situ pH monitoring
o In situ FTIR measurements of aqueous concentrations of nitrite or nitrate (> 2.5 

mM) or sulfate (> 0.1 mM) or sulfite (0.025 mM)
o Ex situ ion chromatography for lower concentrations of these species
• measure within a few minutes after sampling rather than long waiting time reported 

previous. 

• All instruments have been purchased and set up.
• Safety protocols for experiments have been 

determined.
• Preliminary tests have been conducted.

28



Technical Approach:

Prototype Direct Contact Cooler 
(DCC)
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Prototype DCC

Features:
• Packed-bed column design
• Pressure up to 30 bar
• Coupled to 100 kW 

pressurized combustion 
test facility 

• Both simulated and real 
flue gas will be used

• Liquid recycle for pH 
control
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Aims: 
• Demonstrate simultaneous capture 

of pollutants and latent heat in DCC
• Measure SOx/NOx capture efficiency 

vs. operating parameters 
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Progress to Date

• Vendors under contract: 
o Progressive Recovery Inc. - vessel and system design and 

fabrication
o Process Engineering Associates, LLC – reactor modeling, sizing, 

process design
• Preliminary design completed:

o Reactor sizing, packing type, ancillary equipment specifications
o Process flow sheet & piping and instrument diagram
o Reactor model (CHEMCAD) with our detailed chemistry and 

transport developed
• Detailed cost proposal under evaluation
• Construction to be completed Dec 2016
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Reactor Design Specifications

• Vapor residence time:  < 120 seconds
• pH range:  2.5 – 7
• L/G ratio:  3 – 80 (L/m3)
• Number of stages of packing:  5
• Packing type: random saddle ring
• Material of construction:  316 stainless 

steel
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Reactor Modeling for Preliminary Design
• SOx & NOx capture is sensitive to L/G
• Complete removal can be achieved

33

Flue Gas:
200 oC
180 kg/hr

CO2 = 56%
H2O = 39%
N2 = 3%
O2 = 2%
NO = 876 ppm
SO2 = 745 ppm
SO3 = 143 ppm

Clean Gas:
27 oC
134 kg/hr

CO2 = 92%
H2O = 0.1%
N2 = 3%
O2 = 2%
NO = < 1 ppm
SO2 = < 1 ppm
SO3 = < 1 ppm

Liquid In:
23 oC
pH = 3
490 kg/hr

Liquid Out:
23 oC
pH = 2.3
500 kg/hr



Milestones
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Status Task
No.

Milestone
Description

Planned
Completion

Complete 2.1 Purchase Bench-Scale Equip. 03/31/2016

Complete 3.1 Schematic Prototype Column Design 03/31/2016

Complete 2.2 Preliminary Bench-Scale Tests Complete 06/30/2016

In progress 3.2 Construct Prototype 09/30/2016

4.1 Performance Test w/ Simulated Flue Gas 03/31/2017

In progress 5.2 Complete Improved Model 06/30/2017

4.2 Performance Test w/ Real Flue Gas 08/31/2017

6 Full-Scale Cost & Performance Estimate 08/31/2017
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U.S. DOE Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
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