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Program goals and objectives

» Enable solvent design for advancement up DOE’s TRL scale to enable
large-scale testing and deployment by year 2030
> L Develop tools and solvent design methodologies for viscosity prediction/\
reduction across all transformational solvent platforms
B Understand the underlying molecular descriptors that control viscosity
B Develop viscosity reduced order model that can predict key solvent physical
and thermodynamic properties
B Given a library of compounds, down-select to a small number that can reduce
viscosity of current formulations by >400 cP or more
» Apply the developed viscosity model and molecular design principles to
\ Other solvents in DOE’s post-combustion solvent portfolio )
» Budget-permitting, conduct a bench-scale demonstration of the most
advanced solvent that includes extended testing with and without water.

B Use bench-scale testing data to make energy and LCOE predictions for a full-
scale system, using Aspen Plus™ to model the system

August 11, 2016 3
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The challenges of solvent development

HO R, “c—0
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\ / /
Neutral, non-viscous lonic liquid forms upon CO, capture

(but does it have to?)

» The viscosity of the medium changes with CO, loading

» Different R groups generate a big number of compounds to be
screened

August 11, 2016 4
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Example library of CO,BOLs — Round 1 .00 .

N
5 U W S G S W
HO HO HO_ R HO_ R WﬁN\—/N«f \(N\—/N
J e A Pt
)I\ )l\ )|\ | n=2,3,4, 5 |
\/\N\_/N/\/ \/\N\_/N/\/ \/\N\_/N/\/ \/\N\_/N’R R= Et, Pr, iPr, Bu, iBu

~10%-103 molecules
that need to be
screened quickly and
reliably and scaled up

August 11, 2016
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Initial molecular design metrics i———
What we need (specific for each Steric Effects Electronic Ef:)el_lcts
solvent class): X
. - R. X
» Guanidine-based CO,BOLs N 1
B High basicity needed for >90% R1\N)\N/\\+0H JN\
CO, capture \/ n Ro~Nn"N-Rs
B Zwitterionic form has low volatility “tn
» Cyclic base core to prevent X and X,= F, Cl, CF,, (EWG) or
. i OMe, CH,NMe,, (EDG) and
hyd ronS|s E==P|\r/,|éPrl'_:,tB:JPt:/I, tButyl R2=R3=M(29, CFS,ZCFSCFZ', OMe
Initial design concepts: with n=1, 2, 3 with n=1,2,3
» Optimize cation-anion interactions
in the Zwitterion Silane-Based CO,BOLs
» Steric effects
: : | OH |
Na .
» Fine tuned molecular electronics i s|.“( iﬁofsi—
» Effect of hetero-atoms ~N"N” ~N"N—
\_J \_J
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Model Validation
and Refinement of
Design

OH

X
X
1j)MolecuIar Library

N o
1 Design

“tn

Molecular Modeling
and Property
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Molecular modeling tools s

» DFT-based electronic structure for molecular properties (~102103 atoms)

B Accurate description of molecular properties
® Atomic charges needed for classical potential
@ Reaction energetics: H-bonding, CO, absoption energy

» Ab initio Molecular Dynamics and accelerated free energy sampling methods
(metadynamics, Blue moon,) ~103 atoms
B Reactivity including temperature effects and dynamic behavior, free energy estimates
» Classical Molecular Dynamics (MD) (~10%-10° atoms)

B Accurate description of molecular liquid structure, with potentials derived from
electronic structure (Universal OPLS with ab initio charges)

B Obtain number and type of relevant intermolecular contacts
B Transport properties: diffusion and viscosity
» Codes, Software:

B CP2K (www.cp2k.org), NWChem (www.nwchem.org), Gaussian09 (
http://www.gaussian.com/g_prod/g09.htm )

B Viscosity can be directly computed from long simulations (1us), Software: GROMACS

)

» | Desired outcome is a reduced model CO,-loaded
B Shift through many candidates in short time (few days) IPADM-2-BOL

IPADM-2-BOL

v

c

August 11,2016 | 8
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CO,BOLs - Initial computation targets

» Initial and new computational targets

B 3-D steric interactions

B Reduced intermolecular interactions

» Simulate pure liquids and mixtures at 15%, 25%, and 50%, determine
viscosity from analysis of trajectories

» Evaluate inter- vs intra-molecular hydrogen bonding effects on viscosity

Control Molecules & Complexes

I’—-.N ~

14 HO \
{ CHs  nitial best-
[\ performing BOL
N Viscosity ~ 200cP at

\ /
|l A

H3C\N/‘l\’N/CH3 0.25 mol %C02
-/

s
‘-_——

OH

Poor performing BOL
N Viscosity >>1,000 cP at

|
H3;C~ /kN/CH3 0.25 mol %CO,

N

Initial trial Molecules & Complexes

Pl

N -Preserves weights and functional groups
of Current BOL (2"4 amine and alcohol-i.e.
similar CO, adsorption energy)

-Partially restrict mobility of aliphatic side
chain w. 2" ring.

-May favor internal H-Bond.

-May be a more readily synthesizable
target.

-Preserves weights and functional
OH groups of Current BOL (2"4 amine and
N,? alcohol, i.e. similar CO, adsorption
MOy ey
\_J -Restrict mobility of aliphatic side chain

w. 2nd ring.
-Hinders internal H-Bond. ~ August 11,2016 | |9




Validation of molecular model’
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System Experimental Calculated viscosities
(IPADM-2-BOL) values (cP) from MD (cP)
Pure (0% CO,) 8 15
15% mol CO, loading 36 35
25% mol CO, loading 110 150
50% mol CO, loading ~30002 >1000
IPADM-2-BOL IPADM-2-BOL IPADM-2-BOL IPADM-2-BOL
(15% CO,) (25% CO,) (50% CO,)

(0% CO,)

R

'DJH et al. 2014, Energy Procedia 63, 8144-8152, in press. 2ASPEN Plus projection ~ August11,2016 | 10



Molecular level interactions: ~7
-Hydrogen bond Pacific Northwest
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Advanced molecular design:
Locking in the internal H-bond (~80%)
Lower projected cP at all CO, loadings
At 50%: KOL >1500 cP

VOL ~800 cP

High viscosity

120 1 120 A
100 A 100 -
Internal H-bond, e
. . . . '
80 1 34% of zwitterionic species [ 80
1
— I)‘\ m -
m - N S— ’,—’
~—— 60 A eT0] 60 - o ’,a"
OD o 1.65 A —"’
40 1 40 - &
00 - 20 Internal H-bond,
\\ 80% of zwitterionic species
0 ! ! 0 l T — T T 1
0 8 10 0 2

‘;R(A) 6 8 10



Molecular modifications that have deliberate 7
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effect on viscosity e

» Ether groups close to the CO, binding site increase the % of zwitterionic
molecules with internal hydrogen bonds in Koechanol.

» MD predicts a 30% reduction in the viscosity of ether Koechanol compared to
Koechanol, both at 25% mol CO, loading.
B Koechanol (34% internal H-bond and 10% stacking) 150 cP

Ether Koechanol

(52% internal H-bond) Ether open Vandanol
(9% stacking) (61% internal H-bond)
100 cP (MD) (20% stacking)

exp. observation, lower than 120 cP

Koechanol

August 11, 2016 12



Towards a reduced model:
thermodynamics of CO, binding

» CO, binding free energy, optimally ca -15 to -20 kJ/mol

B = +16.5 kJ/mol

Free Energy (kJ/mol)
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S C049)

AG(soIva}‘nL

0,(so

% 4

Y

zr,{, 7&:&; AG(bmdmg)

fy COz(bound!

\q‘

P
4

N

(a:mg;s)av

=
) 3

HOj/

N

A

(0]
C

Neutral

Pacific Northwest

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

Zwitterion

» Red line is binding free energy from blue moon dynamics, blue line is AE

from AIMD

» Confirmation of the equilibrium from NMR data
D. C. Cantu et al. J. Phys. Chem. Lett., 2016, 7 (9), pp 1646—1652

1.

2. Mathias PM et al. (2015) ChemSusChem , 8, 3617-3625.
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Viscosity dependency on loading

log Viscosity

» Exponential dependency on loading.

1000 -

100 -

-
o
1
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® 1-|IPADM-2-BOL Nl/\/
X Model /

¢ 1-MEIPADM-2-BOL -
N 0]
|/\(\

10

15

20

CO2 Loading (mol %)

25

30

- by
X Model N\_/N
® 1-|PADM-3-BOL N
_ A oH
X Model U
35

B Dependence confirmed by MD and experiment

August 11, 2016
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Reduced Model: Explicit H-Bonding

vwvyy

P.
N =c;ln (l—nt) exp (c,L)

1-— Pint
T T From MD or DFT
U4
k/
P,.=aX+b
e ————— From DFT
/" (ESP charges)
K
dn9o [ Y909 )\ 4nqu
X = +
'no Tonu NH

If ro.y > 2.0 A, then P;,, = 0.001
If roy <2.0 A, then

Difference between electrostatic repulsion
(NO) and attraction (OH)

D. C. Cantu et al. submitted

1200 1

-
(=]
(=]
o

Viscosities (cP) from classical MD

800 -

600 -

400 -

200 A
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R? = 0.96
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Structure/Viscosity Correlations e
0.8 | » The reduced model recovers ~80%
06 - of the H-bonding determined by MD
- » Over 90% of correlation between

0.4 -

viscosity and H-bonding by either

0.2 -
MD (A), or RM (B)
0.0 ﬁ. T T T )
0 0.2 0.4 0.6 0.8 1
Pint,X
1200 - 1200
a R2=0.91
S = B
5 1000 1 § 1000 -
S 800 - © 800 -
£ £
o o
E 600 - E 600 -
3 3
o 400 - o 400 -
2 o
-g .‘tn
S 200 S 200 -
2 n
> S
0 +u T T T T T 1 0 - T T T T T !
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Viscosities (cP) from Reduced Model with P;; yp Viscosities (cP) from Reduced Model with P, /9" ' 2010 | 16



2 O 0 conm p oun d S screene d Molecules for computational screening

1. Based on the Koechanol scaffold:

computationally!

v st
L ]
» First cycle: 200 compounds coms
screened by molecular simulation ound |R1 R2 R3  |R4 RS
KOL CHs CH3 CH3 H H
and reduced mOdels Blanks = CH3 in R1-R3, H in R4-5, for clarity
B Predicted viscosities Ether-only Variants
. . CH,0C
B CO, binding energy AKL CH,OCHs | Hs
. BKL CH,0CH3 | CH,;0CH;3;
> Approximately 25 compounds by o oo
full MD of liquid state EKL CH2-0-CH3
. IKL CH,0CH3;
» Down-selected to 5 best candidates [ [cn,0ch: CH,0CHs | CH,0CH,
for further investigation Le OCH, [OCHs
MKL OCH3
B Full MD to validate/tune reduced OKL OCHs
model PKL | OCH3 OCH3 OCH3
_ Fluoro-only Variants
B Synthetic targets DKL CHaCFs | CHoCFs
FKL CH,CF3
GKL CH,CF3
QKL CH,CF3 CH.CF3
RKL CH,CF3
SKL CH,CF3 CH,CF3 CH,CF3
UKL CF3 CF3
VKL CF3
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Another 100 compounds Screened in cycle_z NATIONAL LABORATORY
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H,;C H,;C
CH
\ 3
cHy 3 HO O/\%Ha HO O)\CH3 HO O)<CH3 HO 0/\(CH3 HO o CC':|33
\\ ,/ CH3 CH3
N‘\ /' Nl Nl Nl Nl
H3C\N)>¥\6H3 H3C\N)\N/CH3 H3C\N)\N/CH3 H3C\N)\N/CH3 H3C\N)\N/CH3
/\’_J S -/ -/ -/ -/
< n=1,2 \\
\
275 94,139 228 170 111 146
HsC H,C CH,
HOj/\O/\CH3 HOj/\O/\é%r?Hs HOj/\O)\CH3 HO]/\OXCH;; Hoj/\o/v/
N N N N N
H3C )l\ CH3 H3C )l\ /EH3 H3C )l\ /EH3 H3C )l\ /2H3 )l\
/k - _CH
H3€ H3C)\ N\__JN CHs H3C)\ N\__JN CHs H3C)\ N\__JN CH;s H3C)\ N\__jN CHy M3CNT N7
n=1,2
36 13 n/a, 14 33 29 n/a
HO CH; HO Hs  HO Hs A _CH o)
0 HO 3 HO A~_O~
(o) CH
N]/\ /\C(HS N]/\ /\‘C/H3 Nj/\ j/\ ]/\ 3
H3C | CHs 3C | CHs Hj | CHs Nl N
|
HsC N\)_\JN/KCH3 HsC)\N\)_\JN/kCHs Hs )\N\_)_\jN/kCH HsC\N)\N”CHS Hsc\N)\N”CH3
—/ I *|PADM-2-
BOL =150 cP

14 n/a 14 145 198 1
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Pint Model AAE (kJ/mol) . é‘;'?)
Predicted (CO,BE) Reduceod
cg c" 0 -
1 s 929 1.2 12
, iﬁ‘ 90% -2.0 15

85% -5.3 23

3 oéf;{ -
Y 'éé* 83% 7.3 27
. ’g‘ 76% 9.1 40

Viscosity of original IPADM-2-BOL at 25% ~150 cP
AAE computed relative to IPADM-2-BOL August 14,2018 | 19
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» Dynamic equilibrium between Zwitterion and its acid equivalent

D. C. Cantu et al. J. Phys. Chem. Lett., 2016, 7 (9), pp 1646—1652 August 11,2016 | 20



Theoretical suggestion: Non-ionic CO,

capture solvent systems

O

\\/C'——o \\/C/o
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» We determined the acid-base

=CH, in IPADM-2-BOL
=0 in EODM-2-BOL
=CH, in IPATFMM-2-BOL

equilibrium of several model

T = 1 .gnoowse  CO,BOL systems.

TNDONT TN N T B We found that we can modify the
Zwitterion (Charged)  Acid (Uncharged) electronic structure of the molecule
5\ ° os s to shift the equilibrium towards a

neutral CO, binding species.
 robmaBor B Preliminary data of viscosities from

Free Energy (kJ/mol)

D. C. Cantu et al. J. Phys. Chem. Lett., 2016, 7 (9), pp 1646—1652

= IPATFMM-2-BOL

classical MD simulations indicate
significant improvement

25% mol CO, loading IPATFMM-2-BOL EODM-2-BOL

Viscosity (cP) Viscosity (cP)

All zwitterion 328.5 45.5
+415.4 -117.7 +5.0-5.9

1:1 acid:zwitterion 2142 17.9
+450—- 31.7 +19-16

All acid 137.9 14.2
+21.3-16.3 +0.7 -0.6

21



Neutral capture is more impactful at 7
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A 500.0 IPADM-2-BOL
o
)
2
»
S 50.0
2
>
g) O Experiment
- ~—All Zwitterion
—1:1 Acid:Zwitterion
5.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

% mol CO, loading

B



The same principles apply to different
- solvents: Class 2 GE solvents

e
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» Model validation
Ve e co,
» GAP class of solvents HN—"" Si—0-s N \H, -
» CO, loadings (mol %): 0, 25, 50 Me Me o
Me Me
» Densities at 40, 80 and 120 °C PV N AP AP N
. | | H
» Heterogeneous solvent: different phases ® Me  Me
Zwitterion
System Density at 40 C Density at 80 C Density at 120 C
GAP-0/TEG 975.5 kg/m3 932.7 kg/m3 884.6 kg/m?3
0% CO2 exp: 844.2 (5% error)
GAP-0/TEG 992.5 kg/m3 952.3 kg/m3 906.6 kg/m?3
25% CO2
GAP-0/TEG 1008.7 kg/m?3 970.6 kg/m3 927.4 kg/m3
50% CO2
GAP-1/TEG 969.0 kg/m3 917.9 kg/m3 869.5 kg/m?3
0% CO2 exp: 1000.1 (4% error)  exp: 982.7 (7% error) exp: 859.8 (1% error)
GAP-1/TEG 983.7 kg/m3 939.2 kg/m3 892.7 kg/m?3
25% CO2
GAP-1/TEG 1003.6 kg/m?3 960.8 kg/m3 915.8 kg/m?

50% CO2

23




Pacific Northwest

GAP solvent structure .

» CO, loadings (mol %): 0, 25, 50
» Preliminary viscosities at 40 °C
» Also starting temperature dependence runs

System at40C 0% mol CO2 25% mol CO2 50% mol CO2
GAP-0/TEG 26 +5/-4 cP 65 +14/-10 cP 154 +35/-24 cP
GAP-1/TEG 9+1/-1 cP (exp: ~19 cP) 51 +23/-11 cP (exp: ~90 cP) * *:in progress

» Heterogeneous solvent structure

CO,-GAP-0: red
GAPO: blue
TEG: silver

GAP-0/TEG 0% CO, GAP-0/TEG 25% CO, GAP-0/TEG 50% CO, #



As in lonic Liquids, H-bonds between RNH,*--~O0OCN >z

n - - Pacific North t
are present in the extended liquid structure i Lo
» GAP-0in TEG (40% wt)
» CO, loadings (mol %): 0, 25, 50

» Because CO,-loaded molecules cluster, they form strong H bonds (RNH,* to NCOO-)
within the molecule, and with other molecules

¢

“Open” conformation
No H-bond within molecule

“Closed” conformation
H-bond within molecule

H-bonds present between one “closed” CO,-GAP-0 and one “open” CO,-GAP-0 | 25



Screen 50 compounds for acid/base equilibrium
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» Screen 50 compounds for CO,-binding energy and acid/base equilibrium
» Known and new compounds

» Acid/base properties of 14 compounds still running or being double checked
B Preliminary data presented here

Compound Structure Acid/Base Eq CO, Binding
AE(A-Z) in kJ/mol Within 25 kJ/mol of the CO, binding
Keq=[A]/[Z] at 40 °C energy of GAP-0 or GAP-1
GAP-Dytek j\ﬂ 4.6 Yes
Me Me ~5/1
H,N ”A%i—o—?l—k” NH
Me Me
GAP-Et B g i o | T4LS Yes
\HASi-—-O—Sl—Aﬁ/ all zwitterionic
I
GAP-Ib “|"e “l"e -8.2 Yes
Y\”AT—O_TA” 23/1

Me

Me
| |
_/\S'i_o_sliA” COOH

Me Me

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965
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Design principles for neutral capture apply in
new solvent class (PNNL, patent pending)  Pefsderisest.

Proudly Operated by Battelle Since 1965

CcoO

Single molecule

Zwitterion Neutral
!

-1.5 1.5
©
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—

-

=

>
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|

Q

c

L

o

o -60 -

Equilibrium strongly shifted towards the neutral August Tl 201 | 27



Aminopyridines

Pacific Northwest

Three different classes of compounds,
a common behavior ——
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4 -
4 -
—Acid - Acid
3 -
3 —Zwitterion - Zwitterion c
c 2 —Acid - Acid
<) 3
= 2
2 - 2 —Zwitterion - Zwitterion
® 2 a
Q © —Acid - Zwitterion
8 T
3 g
1 - ] 1
o : : : : : . 0 T T T T T 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Radial Distance (A) Radial Distance (A)

Class 3: PNNL New, all Z Class 3: PNNL New, all A

A PEG DG BT R e iaern o i B RIS DI AT




ass 3: PNNL new system
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3 -
—Zwitterion-Zwitterion
—Zwitterion - Alcohol
c 2 4
.2
S
=
o
(]
E
®
e 1 -
0 T T 1

0 5 10 15 20 25
Radial Distance (A)

30

Radial Distribution

N

-

—Acid - Acid
—Acid - Alcohol

10 15 20 25 30
Radial Distance (A)

Class 3: PNNL New, all Z

PRIy s Laactd

Class 3: PNNL New, all A

YRR R
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Summary B

» Molecular simulations were used to identify the critical structure property
factors that affect viscosity in three different classes of CO, capture
solvents:

B Class 1, PNNL CO2BOLs
B Class 2, GE GAP solvents
B Class 3 PNNL new single component solvents

» Areduced order model was constructed that can be used for quick and
reliable screening

B Can be adjusted to fit other classes

» Novel insights pointing at neutral capture have the potential of drastic
viscosity reductions in all classes of solvents

August 11, 2016 31
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THANK YOU FOR YOUR ATTENTION!
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