

Energy Efficient GO-PEEK Hybrid Membrane Process for Post-combustion CO₂ Capture

DOE Contract No. DE-FE0026383

Shiguang Li, Naomi Klinghoffer, Travis Pyrzynski, S. James Zhou, Howard Meyer Gas Technology Institute (GTI) Huynh Ngoc Tien, Fanglei Zhou, Jarvis Chen, Miao Yu University of South Carolina (USC) Yong Ding and Ben Bikson Air Liquide Advanced Separations (ALaS) NETL CO₂ Capture Technology Meeting

August 8-12, 2016

Project overview

- **Performance period**: Oct. 1, 2015 Sep. 30, 2018
- **Funding**: \$1,999,995 from DOE; \$500,000 cost share
- **Objectives**: Develop a hybrid membrane process combining a graphene oxide (GO) gas separation membrane configuration unit and a PEEK hollow fiber membrane contactor (HFMC) unit to capture \geq 90% of the CO₂ from flue gases with 95% CO₂ purity at a cost of electricity 30% less than the baseline CO₂ capture approach

Team:				
<u></u>	Member	Roles		
	gti	 Project management and planning Quality control and CO₂ capture performance tests 		
	UNIVERSITY OF SOUTH CAROLINA	GO membrane development		
		PEEK membrane development		
	TRIMERIC CORPORATION	 High-level technical & economic feasibility study 		

Process description

GO membrane technology based on our pioneering work published in *Science (2013, 342 (6154) 95)*

Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation Hang Li *et al. Science* **342**, 95 (2013); DOI: 10.1126/science.1236686

Contribution of the paper:

- Structure defect-free GO membrane is impermeable to gas
- Structural defects on GO flakes can be controlled as transport pathway for selective gas separations

What is a membrane contactor?

High surface area membrane device that facilitates mass transfer
Gas on one side, liquid on other side

- Membrane does not wet out in contact with liquid
- Separation mechanism: CO₂ permeates through membrane, reacts with the solvent; N₂ does not react and has low solubility in solvent

gti

Singular PEEK HFMC technology currently at small pilot scale development stage (DE-FE0012829)

Commercial-sized modules

Pilot plant construction to be completed by 9/30/16

3D model of the 0.5 MW_e plant

To be tested at NCCC in 2017 gti

GO-PEEK technical goals

Technical challenges of applying GO-PEEK process to existing coal-fired plants

GO membrane performance – Needs significant improvement

Durability – Long-term stability of both GO and PEEK membranes

Scale-up and cost reduction – Both membranes in hollow fiber format

Progress on GO Membranes

<u>**GO</u>**: single-atomic layered, oxidized graphene</u>

Procedure developed for coating GO on hollow fiber (HF) support

Coating procedure:

Vacuum

Coating Solution

- 1. Valves A and B are open, GO dispersion flows continuously in hollow fiber
- 2. Vacuum filtration is conducted for a controlled time; and
- Close valves A and B, leave the coated fiber under vacuum for a controlled time 3.

GO membrane (thickness: ~40 nm) supported on polyethersulfone (PES) hollow fiber

PES fiber

fiber

Uncoated fiber surface

Coated fiber cross section

qι

Coated fiber sealed in a mini-module for gas permeation testing

Permeation testing unit

Qι

Water bubbler and knockout vessel

Approaches to improve membrane performance

 Create more structural defects on GO flake by HNO₃ etching

Reduce GO flake lateral size by ultra-sonication

W/ ultra-sonication

Optimized membranes showed superior performance to GO-based membranes reported in the literature

Comparison to other CO₂/N₂ separation membranes

Note: Polymer data points (red): 100 nm membrane thickness assumed

Progress on PEEK Membranes

Under the current program, we are developing PEEK fibers with intrinsic CO₂ permeance of 3,000 GPU

To date, intrinsic CO₂ permeance of 2,500 GPU obtained for a new 2-inch module

Test number	Temperature (°C)	Feed inlet pressure (psig)	Retentate pressure (psig)	Permeate pressure (psig)	CO ₂ permeance (GPU)
1	22	5.35	2.7	0.27	2,500
2	22	4.31	2.4	0.18	2,400

This module showed mass transfer coefficient > 3.0 (sec)⁻¹ in capturing CO_2 from low CO_2 -concentration feeds

gti

Plans for future development in this project

Further development for GO and PEEK membranes

Integrated GO-PEEK process tests to achieve technical goal

gti

After the current project, steps can be taken to further reduce capture cost

- Increase CO₂ permeance for both GO and PEEK membranes
- Improve manufacture process to lower membrane costs
- Use advanced solvents instead of aMDEA
- Use novel process for solvent regeneration
 - e.g. gas pressurized stripping reported by Carbon Capture Scientific¹
 - e.g. advanced flash regeneration by UT²

1: Scott Chen et al., Ibid

2. Gary Rochelle, 2016 NETL CO2 Capture Technology Meeting, August 8-12, 2016, Pittsburgh.

Summary

- We are developing a novel CO₂ capture process combining a conventional gas membrane unit and a HFMC unit
- **GO membrane** developed to date
 - CO₂ permeance of 540 GPU and α_{CO_2/N_2} of 860 obtained at 80°C for a humidified CO₂/N₂ mixture
 - Superior performance to GO-based membranes reported in the literature
 - Selectivity higher than other CO_2/N_2 separation membranes
- **PEEK membrane** developed to date
 - Intrinsic CO₂ permeance of 2,500 GPU obtained
 - Mass transfer coefficient > 3.0 (sec)⁻¹ in capturing CO₂ from low CO₂concentration feeds with aMDEA solvent

Acknowledgements

DOE NETL José Figueroa

