Novel CO₂-Selective Membranes for CO₂ Capture from <1% CO₂ Sources DE-FE0026919

PI: Winston Ho, Professor

William G. Lowrie Department of Chemical & Biomolecular Engineering Department of Materials Science and Engineering The Ohio State University

2016 NETL CO₂ Capture Technology Project Review Meeting Pittsburgh, PA, August 8 – 12, 2016

Project Objective

- Develop a novel cost-effective membrane and design of membrane modules that capture CO₂ from <1% CO₂ sources
 - 90% CO₂ Capture
 - 95% CO₂ Purity

3-Budget Period Project

• BP1: 03/01/2016 - 02/28/2017

- Conduct laboratory-scale membrane synthesis, characterization and transport performance studies
- Carry out high-level preliminary techno-economic analysis
- BP2: 03/01/2017 02/28/2018
 - Continue laboratory-scale membrane synthesis, characterization and transport performance studies
 - Fabricate larger lab size membrane (~ 6" by 6")
 - Fabricate, evaluate and down-select from plate-and-frame and spiral-wound membrane modules
 - Update techno-economic analysis performed in BP 1
- BP3: 03/01/2018 02/28/2019
 - Fabricate 3 laboratory membrane modules
 - Test modules with <1% CO₂ simulated gas mixture
 - Update techno-economic analysis
- Integrated program with fundamental studies, applied research, synthesis, characterization and transport studies, and high-level techno-economic analysis

Project Organization and Roles

Ohio State University

- Technical lead
- Concept development and execution
- Novel membrane synthesis/characterization
- Laboratory-size membrane scale-up
- Process design considerations
- Cost calculations

Winston Ho

DOE NETL

Project Manager

José Figueroa

TriSep Corporation

 Consult on membrane scale-up/module fabrication

Peter Knappe

Gradient Technology

 Consult on system and cost analyses

Steve Schmit

AEP

 Consult on plant integration and demonstration considerations

Matt Usher

Funding and Performance Dates

- Total Budget: 03/01/2016 02/28/2019
 DOE: \$1,248,278; OSU: \$372,864 (23% cost share)
 - BP1: 03/01/2016 02/28/2017
 DOE: \$407,616; OSU: \$121,756
 - BP2: 03/01/2017 02/28/2018
 DOE: \$419,628; OSU: \$125,344
 - BP3: 03/01/2018 02/28/2019
 DOE: \$421,034; OSU: \$125,764

Process Proposed for CO₂ Capture from <1% CO₂ Sources

 Proposed membrane process does not require cryogenic distillation (compared to competition)

Location of Proposed Technology in Coal-fired Power Plant

Selective Amine Polymer Layer / Polymer Support

Simplicity of Membrane for Low Cost

Selective Amine Polymer Layer / Polymer Support

- Selective Amine Polymer Layer
 - Facilitated transport of CO_2 via reaction with amine

 $CO_2 + R-NH_2 + H_2O \implies R-NH_3^+ + HCO_3^-$

- Facilitated transport = flux augmentation via reaction
- High CO₂ permeance and CO₂/N₂ selectivity

BP1 – 5-Month Accomplishments

- Improved 14"-wide PES Polymer Support Fabricated with Continuous Machine
 - Economical substrate for lab membrane synthesis
- Composite Membrane Synthesized in Lab
 - Elucidated carrier saturation phenomenon
 - 940 GPU with 150 CO_2/N_2 selectivity obtained at 57°C from lab test using 1% CO_2 concentration feed gas
 - + 770 GPU with 140 CO_2/\bar{N}_2 selectivity obtained using 20% CO_2 concentration feed gas due to carrier saturation phenomenon
- High-Level Techno-economic Analysis Showed Capture Cost of ~\$310/tonne CO₂ (in 2011 \$)
 - ~22% increase in COE
- 2 PCT (Patent Cooperation Treaty) Applications Filed for New Membrane Composition and Process

Affordable Fabrication of PES Support

Continuous Membrane Fabrication Machine at OSU

Successful Continuous Fabrication of Affordable PES Support Demonstrated in DE-FE0007632

Casting Machine

14-inch PES Support

SEM – Top View

2500 feet fabricated

- Manufacturer could not supply PES needed for scale-up
- PES synthesized/developed at OSU to resolve supply issue
- PES technology being transferred to a membrane company₁₂

Successful Continuous Fabrication of Affordable PES Support

SEM Analysis of 14-inch PES Support

Ave. pore size = 43.7 nm, Porosity = 13.1%

• Optimal pore size identified to reduce penetration for improving membrane performance

Composite Membrane Synthesized Selective Amine Polymer Layer on PES Support

Selective layer = 165 nm

Amine Polymer Layer Contains Mobile and Fixed Carriers: Facilitated Transport

Facilitated Transport vs. Solution-Diffusion Mechanism

CO₂ Facilitated Transport Flux: Very High
 CO₂-amine reaction enhances CO₂ flux

- N₂ Flux: Very Low
 - N₂ does not react with amine
 - N₂ transport follows conventional physical solutiondiffusion mechanism, which is very slow

Carrier Saturation Phenomenon

• CO₂ Flux Increases as Pressure Increases until Carrier Saturation Occurs

- At Carrier Saturation, i.e., High CO₂ Pressure
 - CO₂ at high pressure reacts with all carriers incorporated in the membrane
 - CO₂ flux reaches maximum and does not increase with pressure any further

Carrier Saturation Phenomenon (cont'd)

- At Carrier Saturation (High CO₂ Pressure), i.e., Maximum, But Constant CO₂ Flux (j)
 - CO₂ permeance reduces as pressure increases
 - That is: CO₂ permeance increases as pressure reduces

 $\Delta p = p_f - p_p$ or Feed CO₂ concentration

- At Low CO₂ Pressure, i.e., Less CO₂ Molecules
 - More free carriers available for reaction with CO₂
 - + Greater CO₂ facilitation and then higher CO₂ permeance
 - CO₂ permeance increases as pressure reduces

Carrier Saturation Phenomenon Data

High-Level Techno-Economic Calculations

- Basis: Membrane Results at 57°C
 - 940 GPU & 150 Selectivity for 1% CO₂ concentration feed gas
 - 770 GPU & 140 Selectivity for 20% CO₂ concentration feed gas
 - Include Membrane Module Installation Cost and 20% Process Contingency
 - In 2011 dollar: NETL Case 12 of Updated Costs (June 2011 Basis) for Selected Bituminous Baseline Cases

Calculated Cost Results

- 32.1 tonne/h of CO₂ captured from 1% CO₂ source
- \$112 million bare equipment cost
 Membrane 25%, blowers and vacuum pumps 61%, others 14%
- 1.82 ¢/kWh (1.29 ¢/kWh capital cost, 0.23 ¢/kWh fixed cost, 0.26 ¢/kWh variable cost, and 0.04 ¢/kWh T&S cost)
 COE = 8.09 ¢/kWh for 550 MW supercritical pulverized coal power plant
- \$311/tonne capture cost (\$18.2/MWh × 550 MW/(32.1 tonne/h))
- 22.4% Increase in COE (1.82/8.09 = 22.4%)

Plans for Future Testing/Development

Remaining BP1

- Continue laboratory-scale membrane synthesis, characterization & transport performance studies in BP1
- Complete carrier saturation phenomenon study
- Update high-level preliminary techno-economic analysis

• BP2

- Continue laboratory-scale membrane synthesis and characterization for performance improvement
- Fabricate larger lab-size membrane (~ 6" by 6")
- Fabricate, evaluate and down-select from plate-andframe and spiral-wound membrane modules
- Update techno-economic analysis performed in BP 1

• BP3

- Fabricate 3 laboratory membrane modules
- Test modules with <1% CO₂ simulated gas mixture
- Update techno-economic analysis

Acknowledgments

José Figueroa Great efforts and strong inputs

DOE/NETL Financial support