

Development and Testing of Aerogel Sorbents for CO₂ Capture

2016 CO₂ Capture Technology Meeting Pittsburgh, Pennsylvania August 8 – 12, 2016

*Redouane Begag, George Gould, and Shannon White Aspen Aerogels, Inc.

Project Overview

Develop and bench-scale test an advanced aerogel sorbent for post-combustion CO₂ capture from coal-fired power plants

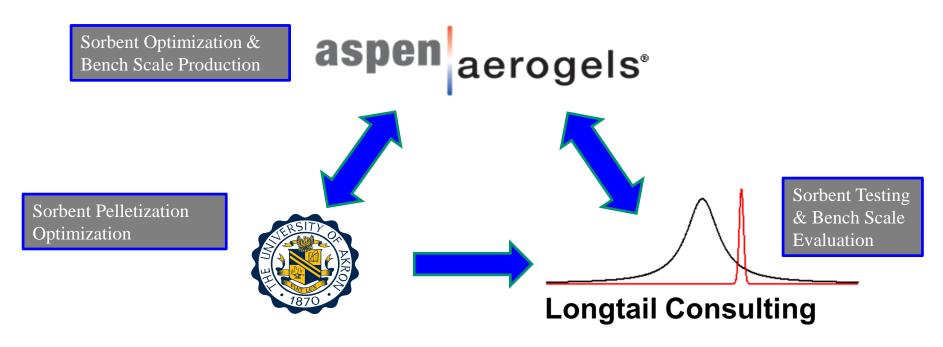
Amine Functionalized Aerogel Sorbent Powder

AFA Pellets (powder + binder)

aspen aerogels

Develop Aerogel Sorbent at Bench Scale for CO₂ Capture

- Improve Amine Functionalized Aerogels (AFA)
- Convert optimized sorbent into bead form
- Develop pellet binder formulations, and pelletization process
- Develop SO_x diffusion barrier for AFA sorbents
- Test & evaluate sorbent technology at bench scale


Bench Scale Evaluation

Develop Compatible SO_x Resistant Binder

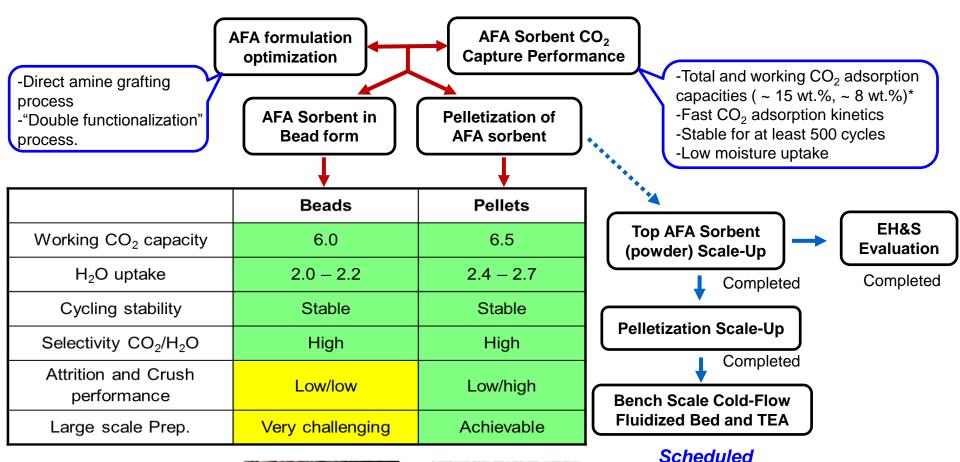
Project Objectives

- 1. Optimize sorbents for improved CO_2 capacity and SO_X poisoning resistance.
- 2. Convert optimized sorbent into durable pellet and bead form for analysis.
- 3. Produce the best candidate sorbent form (bead or pellet) in larger quantities for fluidized bed testing.
- 4. Assess the sorbent in fluidized bed bench-scale testing.
- 5. Conduct a technical and economic assessment of the sorbent technology and process.

Project Team

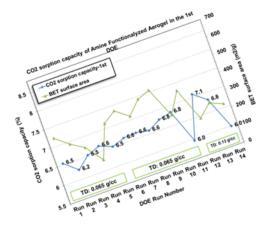
- Period of Performance:
 - 10-1-2013 through 09-30-2016
- > Funding:
 - U.S.: Department of Energy: \$2.99M
 - Cost share: \$ 0.77 million
 - Total: \$3.76 million

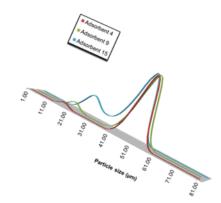
BP#	Description
BP1 (2013 – 2014)	AFA Sorbent Development
	Pellet Development and Optimization
	Sorbent Evaluation
BP2 (2014 – 2015)	Aerogel Bead Fabrication
	Coating Development
	Coated Pellet and Bead Evaluation
BP3 (2015 – 2016)	AFA Pellet Production
	Fluidized Bed Evaluation
	Techno-Economic Evaluation
	Environmental Health and Safety Evaluation

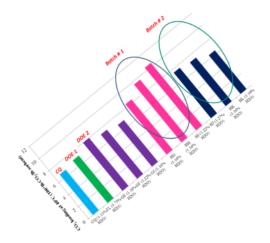

Amine Functionalized Aerogel (AFA) Development

- High surface/high porosity material
- Hydrophobic to enhance CO₂ adsorption selectivity and stability
- > Low specific heat, thus low energy regeneration
- High temperature stability
- Methods identified for manufacture at reasonable cost and high volume

Accomplishments to Date

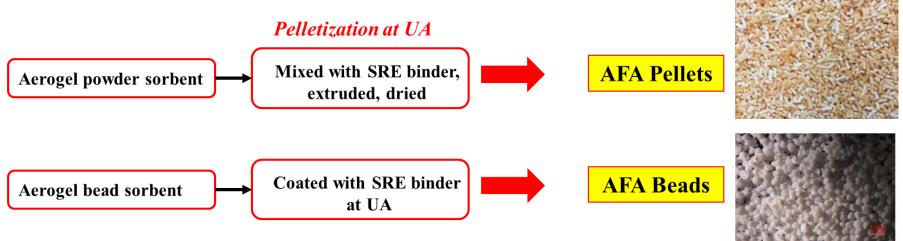

aspen


aerogels


7

Technical Progress

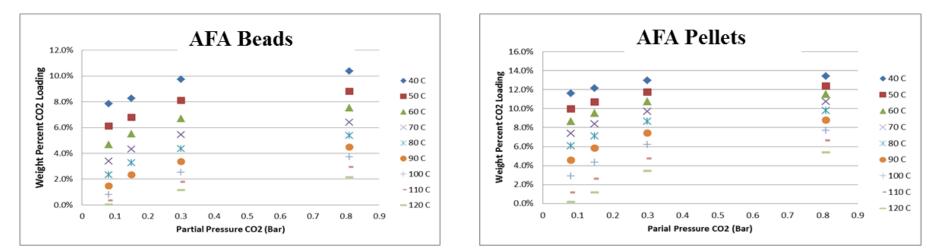
Tests performed on Aspen's AFA bead and pellet sorbents in order to down-select the AFA form to be pursued during BP3.


• Sorbent isotherms

asper

aerogels

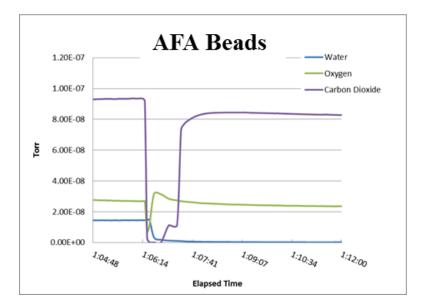
- Sorbent selectivity (CO_2 vs. H_2O)
- Attrition and Crush tests


- Moisture uptake
- Cyclic stability

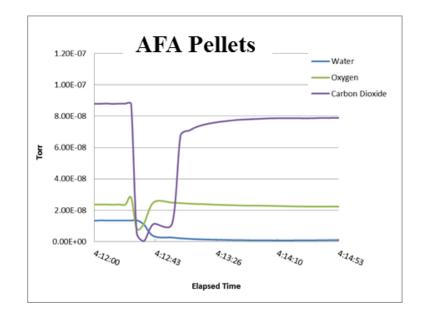
- ⇒ SRE designed for pelletization and SO₂ poisoning resistance.
- \Rightarrow < 4% degradation after a 20-cycle exposure to 40 ppm SO₂ in the simulated flue gas.

T870

Sorbent Isotherms

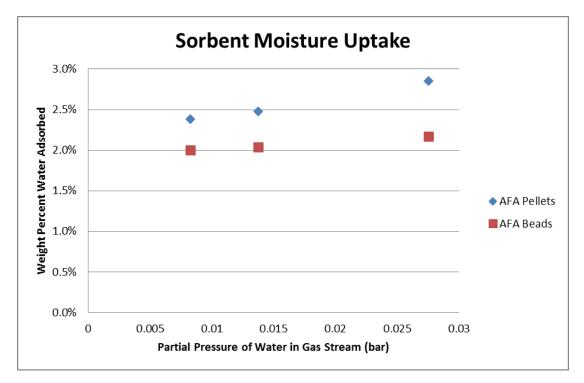

6 wt.% working capacity

6.5 wt.% working capacity

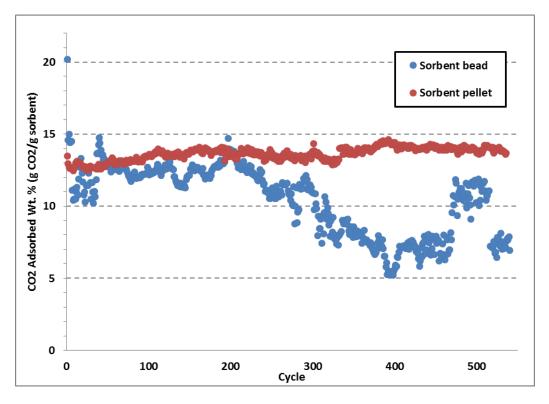

Working Capacity = Adsorp. @ 40 C, 0.15 atm CO_2 – Adsorp. @ 100 C, 0.8 atm CO_2

Good working CO₂ capacity for both sorbent forms

Sorbent Selectivity



16 X more selective towards CO₂ than H₂O


13 X more selective towards CO₂ than H₂O

<u>Water Uptake</u>

- The two sorbent forms indicated very similar behavior.
- The bead form has slightly less water uptake than the pellets.

Cycling stability:

AFA pellets show clear superiority to the beads in terms of reliable and consistent stability throughout long term CO₂ capture viability

AFA Pellet Vs. AFA Bead (Performance)

Jet Cup Attrition and Crush tests

AFA beads were more resistant to attrition than the pellets.

	Before drying	After drying
AFA Beads	-	8.4 lbf
AFA Pellets	40.2 lbf	14.0 lbf

aspen aerogels

ASTM D6175

Decision: Pellets or Beads ??

- Both product forms of AFA demonstrated comparable CO_2 capture performance.
- AFA <u>Pellet</u> form was selected for continuation into Budget Period 3.
- The selection was primarily made based on the scale-up production capabilities of the aerogel at Aspen, and the pelletization capabilities at Akron for future large scale production.

AFA Pellet Scale-Up

30 kg AFA sorbent was fabricated

Pulverizer (a miller, ~ 60 l/hr) used to convert sorbent into a fine powder (particle size ~ 70 micron)

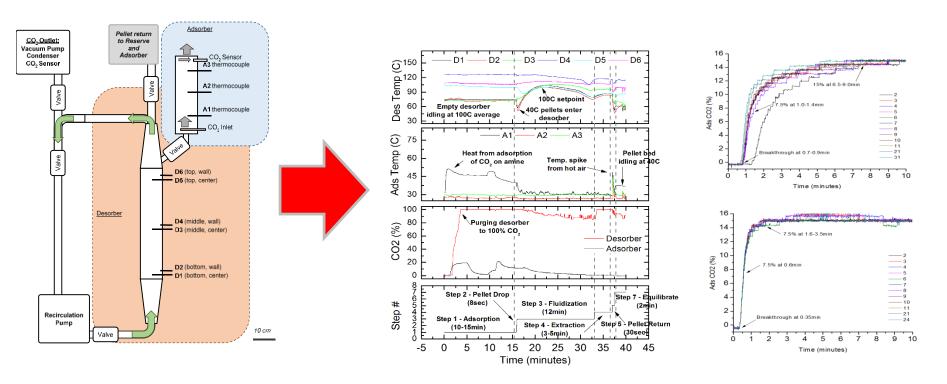
Pelletization Scale-Up

A scaled-up pelletization process has been developed by UA to prepare 30 kg of pellets for bench scale testing. The process includes four steps:

- 1. Mixing
- 2. Extrusion
- 3. Spheronization
- 4. Drying

commercial basket extruder and the extrudate

Pelletization Scale-Up - Spheronizer

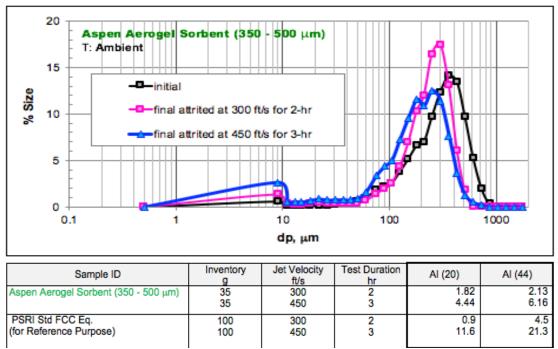


Spheronized pellets depend on the process parameters:

- The rotary speed of the extruder
- The rotary speed of the spheronizer
- The batch size of the extrudate fed into the spheronizer
- The drying conditions

AFA Pellet Performance on 1 kW Test System

- 1.5 liter sorbent pellets tested
- Flue gas: 15% CO2 @ 5, 10, 20 LPM (liters per minute)
- CO_2 breakthrough occurs within 0.7 min. @ 5 LPM and 0.35 min. @ 20 LPM.



Pellet Sorbent Attrition Testing

aspei

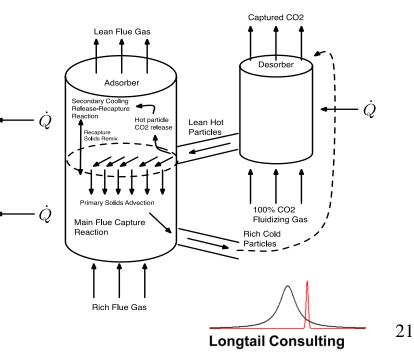
aerogels

AFA pellets were optimized for strength (less attrition) and re-tested.

- The Attrition Index (AI) of AFA Pellets < Reference Fluidized Catalytic Cracker (FCC) catalyst sample
- AFA pellets should be able to survive many cycles in a multiple fluidized bed system without excessive degradation from mechanical attrition.

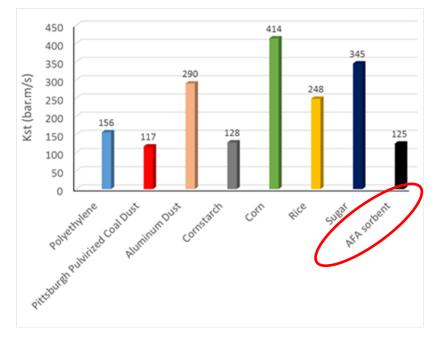
20 Longtail Consulting

Longtail has worked on:

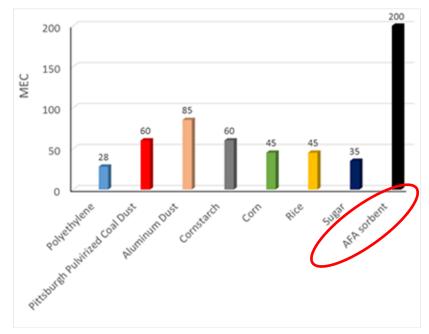

aspei

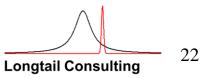
aerogels

- 1. Detailed process engineering-based model of the fluidized bed capture system
- 2. The energy loads and flow inputs function derived from the capture system model
- 3. Analysis of Amine Functionalized Aerogel (AFA) sorbent kinetics:


 $k_d = \frac{15}{60} = 0.25 \text{ (sec}^{-1}), \ k_a = K_{eq}k_d = 21.6709 \ (m^3kg^{-1}sec^{-1}).$

Multiphase turbulent fluidized bed model


Environmental Health and Safety Evaluation


- AFA sorbent showed no corrosion on steel (ASTM C871, ASTM C1617)
- Airborne total dust, inhalable and respirable of AFA sorbent powder was monitored
 - showed an exposure concentration below the enforceable 8-hour OSHA PEL (Permissible Exposure Limit)
- AFA sorbent showed weak explosivity (ASTM E1226, ASTM E1515)
- Aspen has identified safer alternatives for AFA production to minimize the use of flammable substances.

aspen

aerogels

Future Plans

- Cold-flow fluidized bed testing (*Sept. 2016*)
- Conduct bench-scale sorbent evaluations for an optimally-sized sorbent in a fluidized bed configuration (*Oct. 16*)
- ➢ Techno-Economic Assessment (TEA) (Nov. 2016)

Beyond this project:

- ➢ Investigate the safer chemical alternatives identified for AFA production.
- Consider other AFA sorbent forms for large scale production.
- > Partner with companies for large scale testing of AFA sorbent for CO_2 capture.

Summary

- Evaluated AFA bead performance versus pellets
 - Selected AFA pellet form for continuation into Budget Period 3.

Budget Period 3 Milestones

- 1. Bench-Scale Fluidized Bed Testing
 - Scaled-up AFA production and pelletization (30 kg) (*completed*)
 - Fluidized bed sorbent modeling and sorbent kinetics evaluation (*completed*)
 - Cold flow fluidized bed testing (*scheduled*)

2. Techno-Economic Analysis

- Scheduled
- 3. EH&S Assessment
 - ASTM tests (related to EH&S) (*completed*)
 - Safer alternatives for AFA fabrication identified

Project Funding (DE-FE0013127):

U.S. Department of Energy (DOE-NETL)

DOE-NETL Project Manager - I. Andy Aurelio

Team Acknowledgements:

- Aspen Aerogels, Inc. (R&D group)
- Longtail Consulting (W. Morris, W. Nesse)

University of Akron (S. Chuang, L. Zhang, H. Jin, S. Wang, E. Willett)

Thank You

NANOTECHNOLOGY AT WORK