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Backqround

e (Qverarching goal: Understand flame flashback in
hydrogen-rich gas turbines

= High pressure higher Reynolds number flow

= Fuel stratification effects

¢ Experimental program

= Conduct high pressure experiments in UT
swirler configuration

Flame front

= Simultaneous PIV/PLIF measurements to
characterize flame/boundary layer interaction

¢ Computational program

= Develop models for predicting flashback in
stratified flame configurations



Target-based Flashback Modeling

® UT high-pressure swirl combustor

Fuel tube

Air

Fuel

Air
Combustor
chamber

Flow
conditioning Premix section

Swirl vanes with (Quartz tube)

fuel injection ports

with fuel
injection ports




Model swirl combustor

* Produce stratified flow by
selective injection througl
swirl vanes
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Summary of Results

® High pressure experimental data
= 1-4 bar methane and methane/hydrogen experiments conducted

= Focus on fuel stratification

¢ Understanding model sensitivities
= | ow-Ma vs compressible flow modeling
= Effect of stratification on flame structure
= Numerical modeling of flame structure propagation

= Qpen source LES tool for gas turbines



High-Pressure Combustion FaC|I|ty
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 Concentric stratified flame
burner




Acetone PLIF to assess stratification

e Acetone-CH, mixture injected through outer holes only

* Sighals mapped to equivalence ratio
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Effect of stratification on flashback

 Comparison of flashback with fully premixed and stratified
reactants

Fully premixed Stratified



Summary of Results

® High pressure experimental data
= 5 bar methane and methane/hydrogen experiments conducted

= Focus on fuel stratification

¢ Understanding model sensitivities
= | ow-Ma vs compressible flow modeling
= Effect of stratification on flame structure
= Numerical modeling of flame structure propagation

= Qpen source LES tool for gas turbines



Flow Laminarization

e LES solvers based on low Mach
number approximation

= Necessary for accelerated
calculations in low speed flows

¢ Flame propagation affects upstream
turbulence more significantly than
experiments

= |s there a finite propagation speed
of pressure fluctuations?

= | eads to laminarization of flow
ahead of the flame

e Are basic flow assumptions not valid
in unsteady confined flame motions?




Effect of Compressibility on Transient Flows

e Flow governing equations solved in two different
ways

= Fully compressible formulation
- No assumptions regarding compressibility
- Time step limited by speed of sound
= | .ow Mach number formulation
- Assume pressure waves propagate at infinite speed
- Time step limited by local fluid velocity

» Ideal for slow but variable density flows

¢ |s low Ma assumption valid for transient flashback
events?

= Pressure gradients propagate at finite speed
changing local flow structure
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Cowmpressible vs Low Mach Number Solver
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Nuwerical procedure

’ Compressible Low Ma ’

® 5th order WENO scheme for ® Oth order central scheme for
convection convection

@ Oth order central scheme for diffusion @ Oth order central scheme for diffusion

o BQUICK for scalar o BQUICK for scalar

LES with dynamic Sm rinsky model
® W ynamic agorinsky mode L mm -
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Compressibility regime

o Ma<<1 B =

Ma 0.005 002 0.035 0.05 0.065 0.08

e Far away from
compressible regime

e With the compressible
solver : AN

5 5 *  Flow
¢ d,O S —55;(10 -+ 51%dp < Flame
* 'Two competing phenomena

affect density : combustion
and dynamic pressure

C Isocontour 0.7

® The effect of combustion on
density overwhelms the effect
of local compression

C Pfiue



Ditterences in Flame Characteristics

Flashback Velocity [m/s]
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o Phase I : Both solvers are very close

during the onset phase.
The depth stops increasing earlier for the
compressible solver leading to a defect in

flashback speed.

e Phase II : The depth stabilized for the

low Ma number solver but keeps on
increasing for the compressible solver.
Flashback speed recovers. Wrinkling is
underestimated.

e Phase III : The compressible depth is

stable but the flashback speed keeps on
increasing. Flame wrinkling is increasing.



Flame Front Flow Features

ool 0 L - CEisisiet

,ll,,llllnz
T B B

U (m/s) A5 <1 05 0 05 1 1.5

- Flow

Uimfs) <15 -1 <05 0 05 1 15

- Flow X
Flame - Flame

COMP. LOW MA

o PRESSURE =05 Lo

801 801

—Low Mach —Low Mach —Low Mach
60 —Compressible 60\ —Compressible 607\ —Compressible
N N
| | N — 20
20 ~—_ " W
D
o I \ - %
o0 =20
) N
-20- - < o
\\/\\ —_ & _ao- \\
—40F = ~ \ 60l \ \
-60r r \ -80r \
— ! =
-80, 15 = 205 : 05 1 15 > 8%, 15 - 05 0 05 1 15 . 7109 15 - 05 0 05 1 15

Distance to Flame [mm)] Distance to Flame [mm] Distance to Flame [mm)]



Flame Front Statistics
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Conclusions #1

® | ow Ma version predicts global characteristics
= Differs significantly from compressible formulation

= |ntroduces uncertainty in the results

® Gurrent plan

= Test low-Ma and compressible solvers for a variety of flashback
conditions; estimate differences

= Ensure that low-Ma solver is reliable for the range of conditions
tested

- Else, develop compressibility-enhanced versions

» One approach is to introduce acoustics-based techniques



Effect of Stratification

e Strategy for flashback control
= |ntroduce stratification

= | eaner mixtures injected near walls

® How does stratification affect flashback

= Mixture no longer with constant
equivalence ratio

= Premixed combustion models cannot
be used

® For stratification in gas turbines

= |s the flame structure altered?
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PNS of Flame in a Box

e DNS of homogeneous isotropic
turbulence with uniform mean

flow

= Detailed chemical kinetics

¢ Two cases
= | arge scale stratification

- Inflow equivalence ratio varied
from 2 to 0 over 3/4 residence

time
= Small scale stratification

- Equivalence ratio variations
introduced as small-scale
structures
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Large-scale Stratification

® Flame structure a

sequence of flamelets

® Equivalence ratio is

1000

variation not sufficient
to affect flame front
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Swall-scale Stratification

e Scalars generated using model
spectrum

e Peak energy at 1/12 domain height Inflow &

o Statistically stationary case
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Conclusions #2

¢ Small-scale stratified flame significantly different
= Post-flame velocities are lower
= | ess flame wrinkling

= Distributed heat release

® Current plan
= Complete DNS studies
= Establish base line models for stratified mixtures

- Choice between PDF-based approaches or flame-surface based
approaches



Nuwerical Modeling of Flames

e LES is the accepted tool for modeling turbulent
flames

e LES has unique challenges

= Strong interference of numerical method on
solution

= Grid convergence is all-but-impossible
¢ How to mitigate numerical errors?
e Current model development procedure

= Relies exclusively on structured grids

- Toy problems of very little relevance to industry

e |s there an effect of unsteadiness on model
formulations?
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Nuwerical Errors in LES

e LES resolves a range of turbulent length
scales

= A spectrum of wavenumbers
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¢ Numerical methods used to discretize
partial differential equations
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= Numerical errors scale with wavenumber
- Highest errors at filter scale
- Contaminates numerical solution

- Can lead to counterintuitive behavior



Flame Surface Models

® For premixed combustion at moderate Reynolds numbers
= Flame surface models are reasonable

= The motion of flame surface is treated using a single field
variable

- G (level-set) variable or progress variable

® | evel set approach
= Numerically better suited for predicting flame surface
- However, encounters flame volume loss

= Difficult to transition to stratified combustion models

e Approach used here: Progress variable description



Progress Variable Approach and Flashback

e Transport equation for C

%C 1 V- (pUC) =V - (D(C)VC) +w(C)

= Filtered: Leads to unclosed terms; Need
modeling

120

® Models for chemical source term _

= Require underlying flame structure

e LES problem

Source Term [kg.m~ 3.5~

= |[mposed flame structure is not

maintained as simulation proceeds 0,

= Not a big issue for steady-state problems

= Unsteady flashback accumulates these
errors over time
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Flame Thickness

® Model closures use two different
terms

= |mposed flame thickness (L) and
source term

= Product is proportional to
consumption speed

® Gounter-intuitive LES behavior

= Flame thickness is reduced with
time

- Leads to reduced burning rate

- Arrests flashback
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Structure-Preserving Reaction Model

¢ Treat progress variable discretely (in space and time)

C(t+ At) =C(t) + f(C,u)

¢ Introduce time-dependent translation

Oz Nz, t) = x—posLt—Ltu”
F:C(z,t) = C(z,t) = C( (p(C) p(C)/Op (t")dt'),t)

e We require the distribution of C'(z,¢)to be independent of time

e Introduces numerical flame structure

~, POSL 1 haFl IN 74/ 8_5_
fat)= (L% - 2 [ ut)at)y]

e Guarantees constant local flame speed; Enables consistent flame
thickening



Open Source Gas Turbine Software Platform

¢ [ntegral part of the flashback model project
¢ Enable rapid dissemination of results
® Prior collaboration with Siemens

¢ Currently working with Oregon State, lowa State, KAUST, UT
Austin, and Princeton on enhancing capabilities

® Progress iIn last year
= All models implemented in OpenFOAM

= Minimal kinetic energy dissipation enforced



Siemens VLR 3-jet Combustor

® | ean combustion with heat loss

\ U(m/s)




Next Steps

® Develop structure-preserving reaction model

= |Implement and validate using UT swirler data and legacy data
(Darmstadt)

® Develop stratified combustion model with heat loss
= Conduct DNS to evaluate flame structure

= |dentify model formulations

® Fuel effects at high pressure

= |dentify the role of differential diffusion, and fuel composition on
boundary-layer/flame interaction

- Experiments and DNS data



