High Temperature, Low NOx Combustor Concept Development

Kickoff Meeting
Nov 4th, 2015
Prof Tim Lieuwen
Prof Jerry Seitzman, Prof Suresh Menon, Prof Wenting Sun, Prof. Brian German
David Noble
Matthew Sirignano
Agenda

• Motivation
• Technical background
• Proposed work
 – Task 1: Project management & planning (PMP)
 – Task 2: Kinetic modeling & optimization
 – Task 3: Experimental characterization of distributed combustion concept
 – Task 4: Detailed experimental & computational investigation of mixing & heat release distributions
• Program schedule

November 4th 2015
Project Participants

- Contact principal investigator (PI)
 - Prof Tim Lieuwen
- Additional PIs
 - Prof Menon
 - Prof Seitzman
- Collaborators & research engineers
 - Prof Sun
 - Prof German
 - David Noble
- Graduate students
 - Matthew Sirignano
- Undergraduate students
Motivation
Thermal Efficiency

• Thermal efficiency has steadily increased from 47% to 61% over the past 3 decades
 – Success driven by improvements in materials and cooling methods
 – Advanced combustion technologies enabled simultaneous reduction in NOx emissions

• Goal: combined cycle thermal efficiency of 65%
 – Requires turbine inlet temperature ($T_{\text{Turb Inlet}}$) of 1975K
 – New challenge: low NOx at elevated temperatures

Calculations assume methane fuel and a 25ms residence time
Motivation

Emissions

• Current architectures can’t meet current emissions standards at elevated $T_{\text{Turb Inlet}}$
 – EPA limit for NO = 30 ppm
 – Current architecture yields 90 ppm NO at $T_{\text{Turb Inlet}} = 1975K$

• Current NOx reduction techniques are not viable w/o significant residence time reduction

New combustor paradigm is required to meet goal
Technical Background
NOx Formation

- Values are generally orders of magnitude below equilibrium

- Significant NOx formation mechanisms
 - Flame generated NOx (Fenimore, N₂O, etc.)
 - Thermal (Zeldovich)

- Thermal NOx
 - Approximately linear function of residence time
 - Exponential temperature dependence

\[
\begin{align*}
O + N_2 & \iff NO + N \\
N + O_2 & \iff NO + O \\
N + OH & \iff NO + H
\end{align*}
\]
Technical Background

CO Formation

- Values are generally above equilibrium

- Relaxation to equilibrium is exponential function of temperature

- CO emissions generally limit turndown, as relaxation is slow at low temperatures
Technical Background

Current NOx Reduction Techniques

- Current approaches focus on temperature distribution control
Technical Background
Current NOx Reduction Techniques

• Current approaches focus on temperature distribution control
 – Lean, premixed
 • Lean stoichiometry and careful premix
Technical Background
Current NOx Reduction Techniques

- Current approaches focus on temperature distribution control
 - Lean, premixed
 - Lean stoichiometry and careful premixing
 - Axially staged/Late Lean Injection (LLI)
 - Fuel injection in low residence time, high temp environment
Technical Background
Current NOx Reduction Techniques

- Current approaches focus on temperature distribution control
 - Lean, premixed
 - Lean stoichiometry and careful premixing
 - Axially staged/Late Lean Injection (LLI)
 - Fuel injection in low residence time, high temp environment
 - Dilution:
 - Lowers temperature at given fuel flow rate
 - Steam/CO₂/N₂
Technical Background
Proposed Approach

- Thermal NO initiating step:
 \[O + N_2 \leftrightarrow NO + N \]
 \[[NO] \propto [O][N_2]e^{-38,379/T \tau_{res}} \]

- “Knobs”
 - Temperature
 - Residence time
 - [O] concentration
Technical Background

Proposed Approach

- NO formation dependent on residence time and O radical concentration, in addition to temperature
 - Combustion in reduced oxygen atmosphere reduces [O]

- Key approaches:
 - Radical tailoring to minimize [O] concentration
 - Co-optimize with residence time control
 - Advanced manufacturing approaches suggest complete rethinking of combustion – continuous axial distribution of fuel?

November 4th 2015

2015 University Turbine Systems Research Workshop
Related Work
Axial & Azimuthal Staging

• Axial staging concepts will likely require jet in cross flow (JICF) configuration (to keep the fuel injectors out of hot flow)
 – Georgia Institute of Technology – our group
 • Emissions & stability characteristics of jets of various compositions in vitiated crossflow.
 – Purdue University – Lucht
 • Methane and Hydrogen jets in vitiated crossflow
 – Karlsruhe Institute of Technology – Zarzalis
 • Experimental & computational investigation of methane jet in vitiated cross flow at elevated pressures
 – Technische Universität München – Sattelmayer
 • Experimentally supported reactor model for staged combustor

• In addition to their axially staged work, Technische Universität München, has developed an azimuthally staged approach
 – Focused on operation of ultra-low temperature and equivalence ratio flames to greatly reduce NO emissions
Proposed Work

Key Research Questions

(1) For a given firing temperature and residence time, what are the minimum theoretical NOx limits?

 – How much lower is this fundamental limit than the limits achievable with current architectures?
Proposed Work

Key Research Questions

(1) For a given firing temperature and residence time, what are the minimum theoretical NOx limits?
 – How much lower is this fundamental limit than the limits achievable with current architectures?

(2) What does the actual fuel and air distribution patterns look like that attempt to achieve these theoretical values?
 – Then, what are the operational behaviors of such a combustion system?
Proposed Work
Key Research Questions

(1) For a given firing temperature and residence time, what are the minimum theoretical NOx limits?
 – How much lower is this fundamental limit than the limits achievable with current architectures?

(2) What does the actual fuel and air distribution patterns look like that attempt to achieve these theoretical values?
 – Then, what are the operational behaviors of such a combustion system?

(3) What do local pre- & post-flame mixing patterns look like and how is the heat release distributed?
Proposed Work
Scope of Work

- Task 1: PMP
- Task 2: Kinetic modeling & optimization
- Task 3: Experimental characterization of distributed combustion concept
- Task 4: Detailed experimental & computational investigation of mixing & heat release distributions
Task 1: PMP

- Project management plan (PMP)
 - Updated directly following award & every alternate quarter
 - Key risk management tool
 - Outlines technical, financial, and schedule driven program risks
 - Highlight risk level at time of PMP update
 - Include action plan for reduction or rational for acceptance
 - Tracks milestones/critical decision points
 - Ex: Down-select of experimental concepts
Task 2: Kinetic Modeling & Optimization

• Task 2.1: Fundamental kinetic studies
 – Utilize detailed mechanisms
 – Develop insight into:
 • Interactions b/w radical profiles
 • NOx formation rates
 – Impact of radical pool tailoring
 » CO₂ & H₂O addition
 – Pressure sensitivity
Task 2: Kinetic Modeling & Optimization (cont)

- Task 2.2: NOx optimization studies
 - Will attempt to answer the first key research question
 - Will develop computational model of an axially staged combustor with multiple injection locations
 - Approach: model a number of “reactor cells”
 - Each reactor cell consists of sub-components such as a mixer and plug flow reactor
 - Optimization study will be conducted on combustor model
Task 2: Kinetic Modeling & Optimization (cont)

- Task 2.3: Constrained NOx optimization studies
 - Will refine work conducted in previous task by adding additional physical constraints
 - Mixing
 - Finite mixing times
 - Various schemes for mixing process of injected fluids & main flow
 - Recirculation

Independent Mixing of Injected Fluids & Main Flow

Joint Mixing of Injected Fluids & Main Flow
Task 3.1: Facility Development

- Design combustion architecture guided by results of Task 2
 - Lean primary burner
 - Distributed secondary injection of fuel/air/steam
 - Premixed & non-premixed
 - Atmospheric
 - Advanced manufacturing techniques
 - Optical access
Task 3.2: Experimental Characterization

- Observation of operational characteristics of combustor
 - Instability, blow off, limits of operation
- Implementation of fuel/air/steam injection schema developed in Task 2
- Characterization of emissions
 - Local & spatially averaged
 - Traversing probe vs rake
 - Axial profile of key species
Task 4.1: Large Eddy Simulations

- **High Fidelity LES**
 - Investigate turbulent mixing of staged injection

- **LES/LE**
 - History of use in combined experimental & computational studies of flame dynamics

- Will conduct full rig simulations matching physical geometry

November 4th 2015

2015 University Turbine Systems Research Workshop
Task 4.2: Experimental Characterization Using High-Speed Laser Diagnostics

- Velocity field measurement
 - 10 kHz stereo-PIV
- Combustion visualization
 - OH & CH$_2$O PLIF
 - OH* & CH* chemiluminescence
- Post-processing
 - Full Fourier analysis
 - Proper orthogonal decomposition
 - Dynamic mode decomposition
 - Hybrids

PIV for RJICF

OH PLIF for RJICF
Partnership of Experimental & Computational Investigation

• Interaction of experimental & computational activities crucial for success
 – PI’s have experience of collaboration in other joint computational & experimental combustion studies

NOx reduction strategies developed in Task 2
 → Experimental design of stage injection system
 → LES simulation geometry
 → Iteration of reduction strategies and/or combustor design
Program Schedule

Summary of Tasks & Deadlines

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Quarter 1</th>
<th>Quarter 2</th>
<th>Quarter 3</th>
<th>Quarter 4</th>
<th>Quarter 5</th>
<th>Quarter 6</th>
<th>Quarter 7</th>
<th>Quarter 8</th>
<th>Quarter 9</th>
<th>Quarter 10</th>
<th>Quarter 11</th>
<th>Quarter 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 – Project Management and Planning</td>
<td></td>
</tr>
<tr>
<td>1.1: Revise PMP after contract is negotiated.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.2: Update PMP as project progresses</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 – Kinetic Modeling and Optimization</td>
<td></td>
</tr>
<tr>
<td>2.1: Fundamental kinetic studies</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2: NO optimization studies</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3: Constrained NO optimization studies</td>
<td></td>
</tr>
<tr>
<td>3.0 – Experimental characterization of concept</td>
<td></td>
</tr>
<tr>
<td>3.1: Facility development</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2: Experimental characterization</td>
<td></td>
</tr>
<tr>
<td>4.0 – Detailed characterization</td>
<td></td>
</tr>
<tr>
<td>4.1: Detailed LES simulations</td>
<td>X</td>
</tr>
<tr>
<td>4.2: High-speed diagnostics</td>
<td></td>
</tr>
<tr>
<td>Reporting: Progress reports will be prepared and submitted on a quarterly, semi-annual and annual basis. In addition, a comprehensive final report will be submitted which describes the overall project’s objectives, results and conclusions.</td>
<td></td>
</tr>
<tr>
<td>1: Prepare and submit Quarterly Progress Reports</td>
<td>X</td>
</tr>
<tr>
<td>2: Prepare and submit Semi-Annual Report</td>
<td>X</td>
</tr>
<tr>
<td>3: Prepare and submit Annual Report</td>
<td>X</td>
</tr>
<tr>
<td>4: Prepare and submit Final Report</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Program Schedule

Deliverables

<table>
<thead>
<tr>
<th>Deliverables</th>
<th>Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Revised Project Management Plan.</td>
<td>•</td>
</tr>
<tr>
<td>Updated Project Management Plan.</td>
<td></td>
</tr>
<tr>
<td>Quarterly Progress Reports</td>
<td>•</td>
</tr>
<tr>
<td>Semi-Annual Reports</td>
<td>•</td>
</tr>
<tr>
<td>Final Report</td>
<td>•</td>
</tr>
</tbody>
</table>
Conclusion

• Increase in turbine inlet temperature would lead to significant efficiency gains
 – NOx formation is important barrier

• New paradigm needed
 – Study will determine fundamental limits to minimum achievable NO levels, as well as provide understanding of architectures associated with realizing these minima
 • Goal is to both develop a roadmap for what improvements are possible, as well as steps toward realization by turbine companies

• Study involves combination of chemical kinetic, experimental, and CFD investigations to fully evaluate the problem