Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion Emissions in Advanced Gas Turbine Combustors with High Hydrogen Content (HHC) Fuels

Robert P. Lucht, Jay. P Gore, Yiguang Ju and Michael Mueller

Maurice J. Zucrow Laboratories
School of Mechanical Engineering
Purdue University
West Lafayette, IN

Dept. of Mechanical and Aerospace Engineering
Princeton University
Princeton, NJ

DOE Award No. DE-FE0011822

National Energy Technology Laboratory
University Turbine Systems Research Program

2015 UTSR Workshop, Atlanta, GA, November 3-5, 2015
Outline of the Presentation

• Yiguang Ju - Chemical kinetics with EGR effects, Reactor Assisted Turbulent Slot (RATS) burner studies at atmospheric pressure

• Bob Lucht and Jay Gore: High-pressure Premixed Axisymmetric Reactor Assisted Turbulent (PARAT) burner, initial measurements

• Michael Mueller – Advanced numerical modeling of the RATS and PARAT burners
Effects of CO₂ and H₂O Diluents on Laminar & turbulent flame speeds, Chemical kinetics, Emissions

• What happens to the burning rate when diluents (CO₂, H₂O, etc.) are introduced? Four effects:
 – **Dilution** – Reduce reactant concentrations, reduce reaction *rates*
 – **Thermal** – Reduce flame temperature, reducing rate *coefficients*
 – **Transport** – thermal/mass diffusivity (Lewis number) and **Radiation**
 – **Chemical** – Reactions of “diluent” with fuel, oxidizer, and intermediates (e.g. CO₂+H→CO+OH and HCO+M=H+CO, H₂O+O=2OH)

Research accomplishments

• Flame speed measurements of HHC fuels with CO₂/H2O additions
• High pressure kinetic mechanism (HP-Mech) for HHC fuels with EGR
• Turbulent flame speed and structure measurements with H₂O/CO₂ dilution
• Radiation effect of CO₂/H₂O
• HO₂ diagnostics using Faraday Rotational Spectroscopy
Laminar flame speeds: Experimental Design

H₂, CH₄, CH₂O, C₂H₂, C₂H₄, and C₂H₆ fuels with H₂O or CO₂ dilutions

- Two validated experiments
 - Cylindrical, room temperature chamber for CO₂ dilution from 1-20 atm
 - Spherical, heated chamber for H₂O dilution from 1-10 atm
- Both experiments:
 - Centrally ignited spherically expanding flame
 - High speed schlieren imaging
 - Passive custom pressure-release valves

- Electrodes
- Oven
- Heater
- Heated tube
- Fan
- Pressure release tank
- Vaporized liquid or solid components, vacuum pump
- Gaseous components, vacuum pump, vent
- Secondary inlet for gaseous components

- Focus Lens
- High-Speed Camera
- Collimating Lens
- Decollimating Lens
- 100 W Mercury Lamp
- 100 μm Pinhole
- Primary Inlet
- Secondary Inlet
- Combustion Chamber
- Gas-Releasing Holes
- Permanent Magnet
- Iron Plate
- Quartz Window
- Primary Tube
- Secondary Tube
- Mixture components, vacuum pump, vent
- Heated tube
- Vaporized liquid or solid components, vacuum pump
- Gaseous components, vacuum pump, vent
- Heater
For example: C_2H_4 with H$_2$O dilution

- Water vapor decreases the mass burning rate, more at high pressure
- Models disagree with experiments and each other, more at high pressure
- Similar for hydrogen and syngas flames with water vapor*

![Graph](image)

C₂H₂ Flames with CO₂ dilution

- CO₂ dilution decreases burning rate for lean conditions – but doesn’t affect rich conditions
- Typically, CO₂ slows flame by decreasing H through reverse reaction of CO+OH=CO₂+H
- Existing models do not have a good prediction. HP-Mech improves prediction.

Chemical effect of H2, C2H4 Flames with H2O dilution

- Water addition decreases H and O radicals relative to OH and HO2
 \[H_2O + O = 2OH \]
- High collisional efficiency of H2O
 - Increased HO2 from H+O2+M=HO2+M
 - Increased H from HCO+M=H+CO+M
- Chemical effect increases with pressure
Task 2a A high pressure mechanism (HP-Mech) for C_0-C_2 hydrocarbon fuel with H2O and CO2

Many models available, but... not for EGR, pressure dependency...

- Most widely ones: GRI-Mech, USC Mech II, optimization based, off-design problem
- Dryer models: small hydrocarbons: H_2, CO/CH_4, CH_2O, CH_3OH, CH_3CH_2OH, not focused on EGR
- Curran models: also try to optimize the experiments such as ignition delay and flame speed
- ...

HP-Mech

- Addressing the pressure dependence of reactions
- EGR effect
- Using the elementary rates with high level quantum computation and/or experimentally determined, *no optimization!*
- Update the thermochemistry database (e.g. Burcat and Ruscic database).

Key reactions:

For example

- \(H+O_2 = O + OH \)
- \(H+O_2+M=HO_2+M \)
- \(HCO+M = H+CO+M \)
- \(HCO+O_2 = HO_2+CO \)
- \(NO+HO_2 = NO_2+OH \)
- \(NO_2+CH_3 = NO + CH_3O \)
High pressure mechanism (HP-Mech) development

- **Thermochemistry:** Active Thermochemical Tables
- **Transport:** chemkin library: H, H2 and HE from Hai Wang USC Mech II
- **Reaction set:** up to C6 - reflecting the most recent advance of rate determinations
 - H_2-O_2 model (Burke et al, Int. J. Chem. Kinet. 44(2012), 444–474, update or modification)
 - $\text{CO}+\text{OH}=\text{CO}_2+\text{H}$ (Joshi et al, Int. J. Chem. Kinet. 38 (2006), 57-73)
 - HCO decomposition (Yang et al, 8th US National Combustion Meeting, Park City, Utah 2013)
 - HCO+O_2=HO$_2$+CO (Klippenstein private commucation)
 - CH_2 relaxations (Gannon et al, J. Chem. Phys. 132(2010), 024302)
 - CH_3+HO_2 (Jasper et al Proc. Combust. Inst. 32, 279 (2009))
 - CH_3+OH and CH_3OH decomposition (Jasper et al, J. Phys. Chem. A 111, 3932 (2007))
 - $\text{H}+\text{C}_2\text{H}_2+\text{M}=C_2H_3$+M and $\text{H}+\text{C}_2\text{H}_4+\text{M}=C_2H_5$+M (Miller and Klippenstein, Phys. Chem. Chem. Phys., 6(2004), 1192 –1202)
 - C$_2$H$_2$+OH (Senosiain et al., J. Phys. Chem. A 109(2005) 6045-6055)
 -

Hydrogen flames-1

Mass burning rate of H2/O2/He phi=0.85

H+O2+M dominate pressure dependence

9th US National Combustion Meeting,
Cincinnati OH, May 17- 20th, 2015
H2/CO flames

Mixture composition effect at 1 atm
x%H2 and 1-x%CO x=1, 5, 25, 50

Pressure of 25% H2-75% CO
P=5, 10, 20 atm

9th US National Combustion Meeting,
Cincinnati OH, May 17-20th, 2015
Ethane flame

C_2H_6 flame CO_2 dilution effect $\phi=0.8$

C_2H_6 flame CO_2 dilution effect $\phi=1.6$

C_2H_6 flame H_2O dilution effect $\phi=0.8$

C_2H_6 flame H_2O dilution effect $\phi=1.6$
Objectives

• Investigate turbulent burning velocity and flame structures
 – At EGR conditions and elevated temperature
 – Systematic measurements of H$_2$O and CO$_2$ dilution
 • Effects of H$_2$O1 and CO$_2$2 dilution were investigated separately in previous studies only with methane/air.

• Identify chemistry/thermal/transport effects on turbulent premixed flames3 in EGR conditions.

Experiment, RATS Burner

- **Reactor Assisted Turbulent Slot burner (RATS burner)**\(^1\)
 - Heat large flow rates (1000 LPM) up to 700 K with CO2/H2O/N2 dilutions
 - \(~ 55 \text{ cm} \) heated length, 100 × 10 mm exit cross-section (\(D_H \approx 18 \text{ mm}\))
 - Two turbulence generators\(^2,3\), homogeneous isotropic turbulence confirmed by hot-wire anemometry
 - High Reynolds number (\(Re_{bulk} > 10,000\))

\(^3\) Venkateswaran, P. et. al., *Combustion and Flame*, 158, 2011, 1602-1614
Determination of turbulent flame speed, S_T

Find inner edge

Stack perimeters from 500 images

PDF of Flame Perimeters

Single Image of OH PLIF

Find inner edge

$S_T = \frac{Uw}{L_p}$

L_p (4th order polynomial fit)
Effects on flame speed with EGR dilution

- Both CO$_2$ and H$_2$O addition decrease turbulent burning velocity, S_T

- Strong decrease in laminar flame speed S_L
 - Drop from 70.6 cm/s to 28.4 cm/s for 20% H$_2$O
 - Drop from 70.6 cm/s to 36.8 cm/s for 10% CO$_2$

- S_T/S_L increases with dilution for both CO$_2$ and H$_2$O addition
 - More pronounced increase for CO$_2$, however

- Why does normally S_T/S_L increases with dilution?
- How do we know the effects are thermal or kinetic?
EGR Dilution effect at Constant Temperature: Corrugated Flames

- H_2O dilution has almost no discernable effect on L_p, S_T, or S_T/S_L.
- Thermal effects were clearly the dominant factor for H_2O dilution.
- CO_2 dilution produces ($\sim 10\%$) decrease in S_T, kinetic effect.
- Turbulence reduces the kinetic effect of CO_2 on burning velocity.
- CO_2 dilution increases turbulence-turbulent flame speed coupling due to the combined chemistry and transport effect ($1/Le$). (Promoted instability)

$\mathbf{S_T/S_L \sim \left(\frac{u'}{S_L} \right)^{0.5} \left(\frac{1}{Le} \right)^{0.5}}$

- $\uparrow 10\% \text{ H}_2\text{O}$ results in $u'/S_L \uparrow 2\%$ and $1/Le \downarrow 8\%$
- $\uparrow 10\% \text{ CO}_2$ results in $u'/S_L \uparrow 18\%$ and $1/Le \uparrow 8\%$

$U = 7.5 \text{ m/s}$
$T_0 = 450 \text{ K}$
$\phi = 0.9$
$T_{\text{max}} = 2025 \text{ K}$

- Kobayashi 2002
- H_2O addition
- CO_2 addition
EGR Dilution at Constant Temperature: Thin Reaction Zone

- \(\text{H}_2\text{O} \) again has no significant effect on \(L_p, S_T, \) or \(S_L \)
- Turbulence increases the decrease of \(S_T \) with \(\text{CO}_2 \) addition, enhance the turbulence-chemistry coupling.
- Turbulent flame speed deviates from the conventional \(S_T \) correlation.
Conclusions

1. H$_2$O and CO$_2$ dilution have strong thermal, transport, and chemistry effects on the turbulent flame speed of methane. The conventional S_T/S_L vs. u'/S_L correlation may not apply.

2. Thermal effects are the dominant factor in affecting burning velocity for both H$_2$O and CO$_2$ dilution.

3. At constant adiabatic flame temperature, H$_2$O dilution does not produce significant impacts on the normalized burning velocity S_T/S_L due to the opposing effects of kinetics and transport.

4. For CO$_2$ dilution, in the corrugated flame regime, the competition between transport effect and chemistry effect results in an increase in S_T/S_L, thus stronger dependence of turbulent flame speed on Reynolds number.

5. In the thin reaction zone, CO$_2$ addition results in stronger chemistry effect at higher Reynolds number and an approximately constant S_T/S_L, deviating from the conventional turbulent flame speed correlation.
Future Plans

- Development of HP-Mech with NOx at high pressure.
- CH\textsubscript{4}/air + CO\textsubscript{2}, H\textsubscript{2}/air + H\textsubscript{2}O/CO\textsubscript{2} will be further investigated in turbulent premixed flames at higher pressure. (S_T and flame structures)
- Studies of the transport effects on turbulent flame structure

Big problem:

Comparison of predicted peak OH concentrations of hydrogen flames by seven different kinetic models.

Radicals prediction is not constrained in existing models!

Large uncertainty to predict NOx emissions!

\[N_2 + O = NO + N \]
\[N + OH = NO + H \]
High-Pressure PARAT Burner Studies
Robert Lucht and Jay Gore
Purdue University

- Design and fabrication of PARAT burner
- Initial measurements at atmospheric pressure
- Planned high-pressure measurements
<table>
<thead>
<tr>
<th>High Pressure Lab System</th>
<th>Maximum Flow Capacity</th>
<th>Max Operating Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Heated High Pressure Air</td>
<td>9 lbm/s 4 kg/s</td>
<td>700 psi / 1100 K 1500 F</td>
</tr>
<tr>
<td>Electric Heated Air or Nitrogen</td>
<td>1 lbm/s 0.5 kg/s</td>
<td>600 psi / 800 K 1000 F</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>5 lbm/s 2 kg/s</td>
<td>1,500 psi</td>
</tr>
<tr>
<td>Liquid Aviation Fuel (Kerosene)</td>
<td>1 lbm/s 0.5 kg/s</td>
<td>1,500 psi</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1 lbm/sec 0.5 kg/s</td>
<td>3500 psi</td>
</tr>
</tbody>
</table>
Laser Diagnostics for High-Pressure Test Rig

- 10 kHz stereo PIV
- 10 kHz OH PLIF
- Pulse burst laser is being delivered this week for PIV, PLIF at data rates up to 100 kHz
Assembly of PARAT Burner into the Windowed High-Pressure Test Rig
Cross-sectional View of PARAT Burner into the Windowed High-Pressure Test Rig
Initial Operation of the PARAT Burner at Atmospheric Pressure: Operating Conditions

<table>
<thead>
<tr>
<th></th>
<th>Without EGR</th>
<th>With EGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flame No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Re</td>
<td>10000</td>
<td>20000</td>
</tr>
<tr>
<td>Equivalence ratio</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>CO₂ percentage by mass%</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Air flow rate (l/min)</td>
<td>122.2</td>
<td>244.4</td>
</tr>
<tr>
<td>CH₄ flow rate (l/min)</td>
<td>10.3</td>
<td>20.5</td>
</tr>
<tr>
<td>CO₂ flow rate (l/min)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CO₂/CH₄ mass flow rate ratio</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>H₂ flow rate (l/min)</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
IR Imaging of PARAT Burner Flames

- Turbulent lean premixed methane flame
 - \(\text{Re} = 8950 \)
 - Burner diameter \((D) = 15 \text{ mm} \)

- FLIR Infrared Camera
 - w/ band pass filters
 - \(\text{H}_2\text{O} \): \(2.58 \pm 0.03 \mu\text{m}\)
 - \(\text{H}_2\text{O} \) and \(\text{CO}_2 \): \(2.77 \pm 0.1 \mu\text{m}\)
 - \(\text{CO}_2 \): \(4.38 \pm 0.08 \mu\text{m}\)

- Distance between camera and flame
 - \(d = 0.5 \text{ m} \)

- Sampling frequency=430 Hz
IR Imaging of PARAT Burner Flames

Infrared images of the CO$_2$ (4.3 micrometer band) for the four different flames at a representative exposure time of 20 µs

<table>
<thead>
<tr>
<th>Flame No.</th>
<th>Without EGR</th>
<th>With EGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re</td>
<td>10000</td>
<td>20000</td>
</tr>
<tr>
<td>Equivalence ratio</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>CO$_2$ percentage by mass%</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Air flow rate (l/min)</td>
<td>122.2</td>
<td>244.4</td>
</tr>
<tr>
<td>CH$_4$ flow rate (l/min)</td>
<td>10.3</td>
<td>20.5</td>
</tr>
<tr>
<td>CO$_2$ flow rate (l/min)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CO$_2$/CH$_4$ mass flow rate ratio</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>H$_2$ flow rate (l/min)</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
CARS Measurements in Atmospheric Pressure
PARAT Burner Flames: Temperature PDFs Along Centerline

Axial Location

108 mm

113 mm
CARS Measurements in Atmospheric Pressure
PARAT Burner Flames: Temperature PDFs Along Centerline

Axial Location

108 mm 113 mm
CARS Measurements at High Pressure: PARAT Burner Now Installed in HP Test Rig
High-Pressure PARAT Burner Studies

Future Work

• Initial tests for operability
• High-speed stereo PIV, OH PLIF for comparison with numerical modeling
• Nox, CO emission measurements for comparison with numerical modeling
In the corrugated flame regime, where the Lewis number effect is important, CO₂ dilution leads to an increase in \(\frac{S_T}{S_{L,LE}} \).

In the thin reaction zone, however, \(\frac{S_T}{S_{L,LE}} \) now decreases with CO₂ dilution, indicating stronger turbulence-chemistry effect.

However, the leading edge speed does not improve the correlation of turbulent flame speed with \(u' \).
Effects on flame speed with EGR dilution at constant temperature

- To remove thermal effects, we hold the adiabatic flame temperature T_{ad} constant.
- The 10% CO$_2$ cases ($T_{ad} = 2025$ K) is used as a baseline—all other cases with extra N$_2$ dilution.
- Modified Damköhler scaling analysis contains elements of both transport (Le) and kinetics (S_L):
 $$\frac{S_T}{S_L} \sim \left(\frac{u'}{S_L} \right)^{0.5} \left(\frac{1}{Le} \right)^{0.5}$$
- How will the chemistry effect change when we move from the corrugated flame to thin reaction zone regime?