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Project Overview

• The University of North Dakota (UND) Energy & Environmental 
Research Center (EERC) and Department of Mechanical 
Engineering are working with Siemens Energy to test a new method 
for joining high-temperature alloys for use in advanced high-
hydrogen-gas-burning turbines.

• Developed models for designing clamping fixtures and zinc diffusion.
• Thin plates of oxidation- and spallation-resistant Kanthal APMT™ 

have been bonded to high-strength CM247LC and Rene® 80 using 
evaporative metal (EM) bonding.

• Bonded parts, with and without thermal barrier coatings (TBCs), will 
be tested for oxidation, corrosion, and spallation resistance at 
Siemens Energy.

• Gasifier sampling to determine appropriate corrosion conditions.



Characterization of Combusted Syngas 
Contaminants

• Information to be used in designing 
later corrosion testing –
contaminants will not be similar to 
gasifier fly ash.

• Collection of microcontaminants in 
combusted syngas created in two  
pilot-scale gasifiers.

• Analysis of captured 
microcontaminants by SEM.



EERC Pilot-Scale Gasifiers

Entrained-Flow Gasifier (EFG)
1800°C, 300 psi

Fluid-Bed Gasifier (FBG)
800°C, 600 psi



Method 29 
Sampling System



Eagle Butte Coal Ash Composition
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Eagle Butte Coal Mineral Compositions
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Advanced Technique Analysis for
Eagle Butte Fly Ash

• Plot of individual fly ash 
minerals.

• Fly ash minerals 
behave differently on a 
particle-by-particle 
basis.
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Results of FBG Particulate Analyses

• In the quenched syngas, the particulates are predominantly 
0.1–0.5 μm in diameter.

• We were not able to get good energy-dispersive x-ray analyses of 
the small predominant particles.

• XPS shows that the average composition of the syngas particles is 
very close to that of the polycarbonate filter and is most likely 
carbonaceous soot.

• In the combusted syngas, the carbonaceous particles are more 
spherical than in the syngas and slightly larger, typically 0.2–2 μm.

• The combusted particles show more O, N, and S than the 
noncombusted particles.

• Ion etching shows that the increased O, N, and S were confined to 
the surface of the particles.



Results of EFG Particulate Analyses

• No submicron particulates were seen on the syngas filter 
either because the filter had softened or there is just less 
soot formed due to the lower tar formation in an EFG.

• Flakes of iron oxide were collected from the syngas that 
came from system surfaces.  They contained some C, 
Na, Cl, S, and Zn.

• Combusted syngas contained 0.1 to 0.3 micron soot 
particles.

• Some soot is collected even when burning only natural 
gas, but particles are smaller and fewer than when 
burning syngas.
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Diffusion Modeling
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No analytical solution exists for the combination of initial and boundary conditions 
present in the experimental setup (midline symmetry assumed):

100% Zn
(initial) 0% Zn

(initial)

0% Zn
(boundary)



Diffusion Modeling

• A finite difference algorithm was implemented within MATLAB to solve the 
diffusion equation.

• The ‘hopscotch’ iterative solver was implemented to improve accuracy and 
computational efficiency.

• Algorithm assumes initial midline concentration of Zn, assumes constant 
diffusivity, uses a rectangular geometry and allows for different mesh size in 
each direction (x, y, z).



Diffusion Modeling

• ~15 wt% initial centerline composition for model
• D for Zn in APMT ~2.7 E-12 m2/s
• D for Zn in Rene 80/CM 247 ~4 E-14 m2/s



Jig Assembly for Fabrication of Samples



Grooved Backing Plate



Normal Stresses in the Plane for the APMT for 
CM247LC and Rene 80 at 1200°C



TZM Mo Jig Equivalent Stresses for 
CM247LC and Rene 80 at 1200°C



Base Metal–TZM Mo Jig Normal Stresses 
for CM247LC and Rene 80 at 1200°C



Assembled Jib in Preparation to Bond 
the APMT Plate to the Superalloy Block



Alloy Compositions

Composition of Kanthal APMT, wt% – Dispersion-Strengthened

Cr Al Mo Mn Si Fe

APMT 22 5 3 0.4 0.7 Balance

Composition of CM247 LC, wt% – Gamma Prime-Strengthened

Fe Ni Cr Al Ti Co Mo Ta W Nb Hf Mn Si

CM247LC – Balance 8.1 5.6 0.7 9.5 0.5 3.2 9.5 0.1 1.4 – –

Composition of Rene 80, wt% – Gamma Prime-Strengthened

Cr C Mo W Ti Nb Co Al B Fe Zr Ni

Rene 80 14.2 0.16 4.0 4.1 5.1 0.03 9.4 3.0 0.02 0.10 0.04 Balance



Bond Line Between CM247LC (bottom) 
and APMT (top) at 100× Magnification



Microstructure of EM Joints

• Scanning electron microscopy 
(SEM) photo (top) and x-ray map 
(bottom).

• Needle growth and interdiffusion to 
create a joint stronger than the 
APMT.

• Nickel diffuses up to 700 µm into 
APMT.

• Iron diffuses 200 µm into 
CM247LC.

APMT

CM247LC



Morphologies and Compositions in the APMT 
and the CM247LC Near the Bond Line at 1000×

Element, wt%
Fe Ni Cr O Al Mo Hf Ta Ti Mn Zr Co W

C: Large, dark gray areas in APMT; from 
0 to 30 µm into APMT

18.8 57.8 4.4 0.0 14.2 0.0 0.0 0.0 0.0 0.0 0.0 4.8 0.0

F: Large, light gray regions in APMT; 
present from 0 to 40 µm

41.2 29.1 13.7 0.0 2.6 1.1 1.0 1.5 0.0 0.0 0.0 5.3 4.5

G: Large, dark gray regions in CM247LC; 
present from 0 to 225 µm into CM247LC

15.1 58.7 2.8 0.0 12.8 0.0 1.8 3.1 0.4 0.3 0.0 5.0 0.0

H: Large, white regions in CM247LC; 
present from 40 to 260 µm

14.5 7.0 8.8 0.0 0.9 2.6 3.5 57.0 0.7 0.7 0.0 4.3 0.0

I: Large, light gray regions between 
precipitates in CM247LC

31.5 34.8 13.5 0.0 3.4 1.5 2.5 3.6 0.9 0.8 0.0 7.5 0.0



Precipitates at the Bond Line of a 
CM247LC–APMT Joint at 5000×

Element, wt%
Fe Ni Cr O Al Mo Hf Ta Ti Mn Zr Co W

A: Small white specks found along bond line 7.1 12.8 4.9 0.0 2.7 0.0 27.8 25.0 4.3 0.0 0.0 2.2 13.2
B: Black specks found along bond line 6.6 8.2 2.9 38.8 32.6 0.8 7.2 0.0 1.0 0.0 0.0 1.9 0.0



Precipitates Within the APMT Near a 
CM247LC–APMT Joint at 5000×

Element, wt%
Fe Ni Cr O Al Mo Hf Ta Ti Mn Zr Co W

D: Small, white precipitates in APMT 8.3 3.3 3.0 0.0 0.6 0.2 23.8 42.8 14.5 0.1 2.7 0.7 0.0
E: Dark gray, small, and circular in 
APMT; present in APMT past 15 µm

22.7 49.5 6.5 0.0 13.4 0.3 1.0 2.8 0.2 0.2 0.0 3.4 0.0



Bond Line Between Rene 80 (bottom) 
and APMT (top) at 100× Magnification



Morphologies Near the Bond Line in an 
APMT–Rene 80 Joint at 1000×

Element, wt%
Fe Ni Cr O C Al Mo Ti Co W Zr Y Si

J: Black and round precipitates in bond 
line; diffused up to 30 µm into base metal

2.7 12.3 4.0 37.9 6.1 33.6 0.0 0.8 2.6 0.0 0.0 0.0 0.0

K: Black precipitates in Rene 80; formed 
approx. 30–45 µm below bond line

0.0 2.0 0.7 47.0 3.1 47.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

L: Light gray, skinny, and long 
precipitates in Rene 80; formed approx. 
45–60 µm below bond line

0.0 2.3 0.0 0.0 4.1 0.0 0.0 93.6 0.0 0.0 0.0 0.0 0.0

M: Gray regions in between other ppt. 3.7 64.0 8.9 0.0 3.8 3.4 3.2 3.4 9.6 0.0 0.0 0.0 0.0



Precipitates in the APMT Near an 
APMT–Rene 80 Joint at 5000×

Element, wt%
Fe Ni Cr O C Al Mo Ti Co W Zr Y Si

N: White specks in APMT 50.7 3.6 11.4 0.8 13.0 2.5 0.0 2.0 0.0 0.0 7.7 0.0 8.3
O: Black specks in APMT; 
from 0 to 30 µm

44.4 2.7 10.6 15.0 5.7 12.6 1.3 0.0 0.0 0.0 0.0 7.7 0.0

P: Gray region in APMT 68.3 3.8 15.5 0.0 5.2 4.4 2.8 0.0 0.0 0.0 0.0 0.0 0.0
Q: Gray region 69.7 4.8 15.3 0.5 3.0 3.9 2.6 0.0 0.0 0.0 0.0 0.0 0.2



EM Bonding Initial Observations 

• One bond for each superalloy was weak, likely due to 
oxidation during a month long period between sandblasting 
and bonding.

• Previous tests with CM247LC show bond is stronger than the 
APMT.

• The procedure allows all of the zinc to diffuse out down to the 
detection limit (0.1%) and evaporate from the surface.

• Most zinc diffusion occurs through the APMT.
• There is significant interdiffusion between the alloys, 

especially iron, nickel, tantalum, and hafnium, more with 
CM247LC than with Rene80.

• The interdiffusion causes precipitation of different phases near 
the bond line.
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Future Work

• Siemens Energy will perform precipitation hardening 
procedure on bonded superalloys.

• TBC will be applied to the APMT layer on a portion of the 
samples.

• They will then perform their standard oxidation, spallation 
resistance, and hot corrosion tests on the samples and 
compare to previous results for unbonded samples.

• EERC will perform hardness tests and SEM analyses on 
nonhardened and hardened crosssections.

• EERC will perform SEM analyses on oxidized and 
corroded samples.  Will aluminum cross from the 
superalloy (source) to the APMT (sink)?
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