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Objectives

Joint Experimental/Computational program

*|nvestgate boundary layer flashback in swirl
combustors with hydrogen enriched fuels

*Develop improved LES models for this
challenging target problem

* Use OpenFOAM platform to facilitate
transfer to industry

* Conduct experiments in a newly-developed
swirl combustor under varying pressure
conditions

* Make high-fidelity time-resolved
measurements for physics and validation



Current Presentation

*New Experimental Results
- Solid particle seeding to enable velocity
measurements in unburnt and burnt gases
- Tomographic PIV and flame front measurements
- Measurements of flashback at pressures up to 5 atm

* New LES Results

- New models have been developed to improve
prediction of turbulence in non-reacting flow and in
presence of flame

- Extensive validation with literature and UT data



Model Swirl Combustor



Model swirl combustor
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e Designed to operate at up
to 10 bar

* 8” internal diameter

e Stainless steel construction

* Allows mounting of various
burners
- Flashback
- Stratified flames

* Optical access through
sides and top

* To date we have operated
it only to 5 bar




High-Pressure Combustion Facility
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Measurements at 1 atm

CH,-air flames



Flashback: CH,-air at Re,, = 2000

*High-speed
chemiluminescence
imaging (2 kHz)

*Flashback along
center body in
swirling motion

Flame stabilizes on
trailing edges of
swirler vanes




High-speed particle image velocimetry

Simultaneous 3-component (stereo-)PIV and flame
luminescence imaging
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BL flashback (last year’s results)

Channel flow Swirling flow
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Planar PIV in unburnt and burnt gas

flame luminescence axial velocity

t=21.00ms
-45
-50
-55 =
- 3
£ al
/’ N |E[; 1
(OF |8 AR AL
Ol : AR
65 f
field of o] 3
view 7 2ol 0] ) 4
for PIV \ ‘ .,““ ! r
75 [ m— " y
0 0

>
e
x




Planar PIV in unburnt and burnt gas

Improved data for validation
Axial velocity Swirl angle Radial velouty

= Moderate acceleration in the axial direction in burnt gas
farther downstream of flame tip

u [m/s]

swirl angle [°]

z [mm]
3
Center body
SN
Center body
Center body

= Swirl decreases in burnt gas — realignment of streamlines



Measurements at 1 atm

H,-enriched flames



Flashback Modes (new interpretation)

e “Swirl-flow flashback”

* Flame tongues swirl around
centerbody as they propagate
upstream

* Found in both CH, and H, cases

H,/CH,
(90% H, by
vol.)

e “Channel-flow flashback”
* Flame cusps convex towards reactants

propagate upstream in streamline

direction
e Occurs on windward side of flame H.,/CH
2 4
tongue (90% H, by

vol.)

e Foundin H2 and CH4 flames
e Mechanism seems to be similar to
that in non-swirling channel flow

flashback




Flame Spread — Effect of Hydrogen

Matched laminar flame speeds

1 atm
CH,-air H,-air
$=0.8, =0.4,
T,4=2000K T,q=1400K
Re, =5,000 z  Rey=5,000
5,=0.26 m/s S 5=026m/s

Center body
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3D Measurements
CH,-air Flames
Pressure: 1 atm



High-speed tomographic PIV

* Itis clear that fully 3D measurements of the complex
flowfield would be beneficial

=» Tomographic PIV — 3D velocity in a volume

PIV thin laser

sheet

cameras

stable

flame body

measurement

thick laser domain
o sheet —
intensified .WI “ - [l{; .
camera e B stream-
\. mixing lines

&

tube
b swirler



3D flame surface reconstruction

. Camera l Camera 2
1. Raw images

2. Image preprocessing

Camera 3 Camera 4



3D flame surface reconstruction

1. Raw images
2. Image preprocessing

3. Reconstruction of 3D-
particle field

4. Determining
interrogation volumes
occupied by flame




3D flame surface reconstruction

* We have
developed a new
method to
reconstruct the 3D
flame surface

110

* Uses tomographic
reconstruction of
aerosol particles

(]
y [mm]

* Method gives
flame surface +
velocity field at e
4kHz z [ x [mm)
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Time-resolved 3D flow-flame interaction

r/j top view:




Effect of flame on approach flow

3D displacement of streamlines
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Summary of upstream flame propagation

Flame Tongues Flame Bulges
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Flashback experiments at
pressures up to 5 atm



CH,-air flashback at 1 atm and 4 atm

* Equal volume flow
rate

* Increased flame
wrinkling

* Less flame spread
(remains closer to
centerbody)




Flashback at different pressures

Maintain same average volume flow rate
Average axial velocity of 2.2 m/s




Effect of pressure on flame shape
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Effect of pressure mean velocity profiles

- Azimuthal, 1 atm
gL LT TS - Azimuthal, 5 atm

Velocity [m/s]




Large-Eddy Simulation
Results
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Swirler Computations

* Swirl vanes are sources of unsteady vortex shedding

- Capturing these structures is critical
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Non-reacting Flow Statistics

Mean/Azimuthal Axial RMS Axial Velocity
Velocity (grid convergence)
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* Mean velocity insensitive to grid size

- RMS velocities require much higher resolution to
capture vane-generated turbulence
- Similar results at all axial positions



Reacting flow simulations

* Filtered-tabulated chemistry
model

- Wrinkling factor added to model
sub-grid flame structure
* Filter size of 0.5 mm

* Grid size from 0.4to 1 mm

- Note that filter size is enforced
using a filtered chemistry model

* This approach provides a
natural transition to stratified
flames

FLAMELET SOURCE
TERM

Lines denote

different grid-
to-filter ratio

FILTERED SOURCE
TERM




Stable flame configurations

* Blockage effect induced by the
flame creates upstream reverse
flow pockets

* The effect is enhanced at high
pressure

1 ATM/CHA4 4 ATM/CHA4

Flame front

0 U axial [m/s]

| -0.02




Flame topology during flashback

* Flame front more uniform in azimuthal direction

* Flame tongue appears only when flashback is
triggered

* Both observations differ from experimental data

FLAME SURFACE

ISOCONTOUR OF
EQUIVALENCE
RATIO



Flame Laminarization

* LES solvers based on low Mach
number approximation
- Necessary for accelerated
calculations in low speed flows

* Flame propagation affects
upstream turbulence more
significantly than experiments
- Low Mach number solver seems to

spread out pressure disturbances
over entire domain

* Are basic flow assumptions not
valid in unsteady confined flame
motions?
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Program Outcomes

* New 1-atm and high-pressure swirl-flame facilities have
been constructed to enable study of flashback at a range
of pressures

* Extensive measurements have been made of boundary
layer flashback with varying
- Reynolds number
- Fuel composition (CH,+H,)
- Pressure (1 to 5 atm)
* Used high-speed PIV and 3D flame surface imaging

* Measurements have provided new physical insight and
proved valuable for LES model validation



Program Outcomes

* Developed a new flamelet approach for premixed
flames with wall quenching
- Targeted for boundary layer flashback
- Validated using DNS data and experimental measurements

* Developed a minimally dissipative collocated
numerical scheme for unstructured grids
- Implemented and verified in OpenFOAM open source
package
- Adapted for industrial use, and validated in complex
geometry test cases

* |dentified potential shortcomings
- Low Ma assumption may not produce flashback flame
structure
- Pressure effects might be transient in nature
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