Design, Fabrication and Performance Characterization of Near-Surface Embedded Cooling Channels with an Oxide Dispersion Strengthened (ODS) Coating Layer

2015 University Turbine Systems Research Workshop

M.K. Chyu, S.Siw
University of Pittsburgh

Bruce S. Kang
West Virginia University

Award Number: DE-FE0025793
Period of Performance: 10/1/15 to 9/30/18
University Turbine Systems Research

Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan
- Tasks
 1. Advanced Impingement
 2. ODS Powders Fabrication and Characterization
 3. ODS Coating (AM Assisted) (Preliminary results)
 4. Microstructural and Mechanical Properties Characterization
 5. Detailed Experimental Measurement and Validation
Technical Background/Approach

Targeted Areas of R&D

Compressor
- Increased PR
- Efficiency improvement

Combustor
- Fuel flexible
- Low Nox
- Increased Temperature

Turbine
- Increased inlet temperature
- Improved efficiency
- Reduced in cooling and leakage

Exhaust Temperature
- Increase for maximized combined cycle performance

Improved Coatings
- High temperature capability
- Reduction in thermal conductivity

Power Output
- Increased to lower $/kW

Airfoil metal temperature distributions (in K) $h_c = 3000 \text{W/m}^2\text{-K}$

Gas temperature: Hydrogen-fired turbine (~1430°C)

Near surface ‘skin cooling’ or ‘double-wall’ internal cooling arrangement leads to a significant reduction of metal surface temperature, ~50 – 100°C, compared to conventional serpentine cooling designs

University Turbine Systems Research

Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan

Tasks

1. Advanced Impingement
2. ODS Powders Fabrication and Characterization
3. ODS Coating (AM Assisted) (Preliminary results)
4. Microstructural and Mechanical Properties Characterization
5. Detailed Experimental Measurement and Validation
Near Surface Embedded Channel Cooling

Technical Challenges
- Design optimal aerothermal configuration
- ODS powder fabrication, ODS layer deposition processing
- Scale-up and commercial manufacturing of test articles

Project Objectives
- To design highly-heat-transfer augmented and manufacturable internal cooling channels for the development of NSECC. The two heat transfer augmentation techniques to be explored first are:
 (a) advanced impingement cooling
 (b) zig-zag channel configurations
- To produce ODS particles within 45-105 microns which will be used in an additive manufacturing (AM) process based on laser deposition to build NSECC test modules
- To develop fabrication process through additive manufacturing for coating either a densified ODS layer over a grooved single crystal superalloy substrate to form an enclosed NSECC, or an ODS layer with cooling channels embedded within the ODS layer atop a single crystal superalloy metal substrate
- To characterize the thermal-mechanical material properties and cooling performance of the AM produced ODS-NSECC protective module under high-temperature conditions. Comparison with the state-of-the-art cooling technology will be made and the performance improvements over the standards will be assessed
Enhanced Heat Removal Capability

Current NSECC design leads to 50-70% over existing internal cooling technologies. Additional improvement is projected.

Task 1 – Advanced Impingement
- Design, CFD modeling & scaled testing
- Advanced impingement

Task 2 – ODS Powder Fabrication and Characterization
- ODS powders fabrication
- Characterization

Task 3 – ODS Coating (AM Assisted)
- Process development and optimization

Task 4 – Microstructural and Mechanical Properties Evaluation
- Thermal Cyclic Tests, Micro-Indentation Tests
- OM, EDX, SEM, XRD, TEM

Task 5 – Design Integration & Testing
- High Temperature, Pressurized Testing (NETL)
- High Temperature Testing Facilities (Solar Turbines, Inc.)

Near Surface Embedded Cooling Channel (NSECC)

Novel Metallic ODS Surface Coating
- Ultra-High Temperature (1200°C) Strength
- Oxidation Resistance
- Significant challenges in traditional manufacturing

Combustor

Aerothermal Test Section

αAl₂O₃ / NiO ODS Structural Layer Substrate (Superalloy)
Research Task Plan

Design, Fabrication and Performance Characterization of Near-Surface Embedded Cooling Channels with an Oxide Dispersion Strengthened (ODS) Coating Layer

Research Task Plan (3 years)

- Prepare and finalize design model
 - 3D print test coupons (Objet 260)
 - (1) Heat transfer measurement
 (2) Flow field measurement
- ODS particles
 - 3D print test coupons (LENS450)
 - Microstructural evaluation
 - (1) Thermal cyclic experiments (Dry Air)
 (2) Thermal cyclic experiments (Wet Air)
 (3) Micro-indentation
 (4) Microstructural evaluation
- Test Matrix (1)
 - Optimize processing parameters
- Results and data reduction
- Compile results
 Conclusions

Optimize processing parameters
University Turbine Systems Research

Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan

Tasks

1. Advanced Impingement
2. ODS Powders Fabrication and Characterization
3. ODS Coating (AM Assisted) (Preliminary results)
4. Microstructural and Mechanical Properties Characterization
5. Detailed Experimental Measurement and Validation
Task 1 Advanced Impingement

Test #1 Inline 90° jets
Jet diameter, D: 0.25” ; Jet length: 2D
Inter-jet spacing: 3D

Test #2 Staggered 90° jets
Jet diameter, D: 0.25” ; Jet length: 2D
Inter-jet spacing: 3D

Test #3 Inline 90° jets
Jet diameter, D: 0.375” ; Jet length: 1.33D
Inter-jet spacing: 2D

Test #4 Inline 90° jets
Jet diameter, D: 0.25” ; Jet length: 2D
Inter-jet spacing: 2D
Task 1 Advanced Impingement

- Test #1 and #2 – Significant impingement from the jets
- Test #3 - larger jet, reduce the bulk velocity, very minimal impingement effects, most uniform heat transfer distribution among all tested cases
- Test #4 - total number of jets is 50% more than other test cases
 - impingement effects are preserved
- Design and fabricate scaled-up test section for detailed experimental study, for validation with CFD results
Task 1 Advanced Impingement

Objective: Develop internal air foil cooling technologies capable of yielding an elevated heat transfer enhancement with reasonable manufacturability

- **Leading Edge Cooling - screw (helical) cooling**

 Challenge: Some of the promising intricate vortex generating geometries which were studied in the up-scaled research models cannot always be reproduced in actual size blade castings or are very sensitive to the manufacturing tolerances, particularly when small internal holes and sharp edge features are required.

Why? Advantages?

- Swirling flow structure, move radially, generating 3D screw-shaped flow
- Optimized screw cooling configurations resulted in more uniform cooling
 ~ more efficient than direct impingement
- Less sensitive to fabrication tolerances than highly effective internal cooling technique,
 ~ more attractive for industrial applications
Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan
- Tasks
 1. Advanced Impingement
 2. ODS Powders Fabrication and Characterization
 3. ODS Coating (AM Assisted) (Preliminary results)
 4. Microstructural and Mechanical Properties Characterization
 5. Detailed Experimental Measurement and Validation
Task 3: ODS Coating (AM Assisted)

Objective: Develop and optimize processing parameters for fabricating an ODS layer atop of substrate

Approach
- Produce a series of test coupon with densified ODS layer atop of single crystal nickel based superalloy substrate using varying major parameters.
 - Laser power, powder feeding rate, deposition speed, hatch spacing, hatch pattern
Task 3: ODS Coating (AM Assisted)

- Preliminary result
 Test coupon – single crystal nickel based superalloy with densified ODS layer
Task 3: ODS Coating (AM Assisted)
Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan

Tasks
1. Advanced Impingement
2. ODS Powders Fabrication and Characterization
3. ODS Coating (AM Assisted) (Preliminary results)
4. Microstructural and Mechanical Properties Characterization
5. Detailed Experimental Measurement and Validation
Task 5: Detailed Experimental Measurements and Validation

- Conduct HT/P testing at 1100°C demonstrating ~50-70% enhancement of NSECC over smooth channel and pin-fin arrays
- Further optimization of the NSECC configuration for enhanced cooling performance
- Address additive manufacturing capabilities for production of parts
Dr. M.K. Chyu, Dr. S.C. Siw - University of Pittsburgh (Pitt)

<table>
<thead>
<tr>
<th>Task Description</th>
<th>1<sup>st</sup> Year</th>
<th>2<sup>nd</sup> Year</th>
<th>3<sup>rd</sup> Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-weekly, quarterly and final reports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project management and planning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1.1 Heat Transfer Characterization of Optically Clear Scaled Test Section and Test Coupon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1.2 Development and Process Optimization to Coat an ODS Layer on Single Crystal Superalloy Substrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1.3. Heat Transfer Characterization of ODS/NSECC Protected Single Crystal Superalloy Coupon under High Temperature Environment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dr. Bruce S. Kang - West Virginia University (WVU)

<table>
<thead>
<tr>
<th>Task Description</th>
<th>1<sup>st</sup> Year</th>
<th>2<sup>nd</sup> Year</th>
<th>3<sup>rd</sup> Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 2.1 Fabrication approach to produce ODS powder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.2. Thermal cyclic experiment on ODS Alloy Specimens</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
University Turbine Systems Research

Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan

Tasks

1. Advanced Impingement
2. ODS Powders Fabrication and Characterization
3. ODS Coating (AM Assisted) (Preliminary results)
4. Microstructural and Mechanical Properties Characterization
5. Detailed Experimental Measurement and Validation
Task 2: ODS Powders Fabrication and Characterization

Objective: Develop and optimize ODS fabrication process for additive manufacturing

Approach

- Powder mechanical alloying using Hosokawa Mechano-Chemical Bonding (MCB) followed by Ball Milling (BM)
 - For MCB, powders are subjected to substantial compression, shear, mechanical forces under high rotating condition (~4000 rpm), through a gap between chamber and press head
 - Enable smaller particles to be dispersed uniformly and bonded onto base(host) particles without using binders.
 - Improved particle sphericity, ideal for precision mixing of nano and submicron powders.
 - Grain boundaries of host particles are pinned by nano-oxide particles,
 - minimized grain growth during sintering.

Why MCB + BM?

SEM micrographs of MCB processed powder sample A1 and A2
(a). Sample A1; (b) close view of (a); (c) sample A2; (d): close view of (c)

<table>
<thead>
<tr>
<th></th>
<th>Cr (7.5~10 µm)</th>
<th>Al (4.5~7 µm)</th>
<th>Y₂O₃ < 50nm</th>
<th>W (~1 µm)</th>
<th>Ni (4~8 µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>20</td>
<td>5</td>
<td>1.5</td>
<td>0</td>
<td>73.5</td>
</tr>
<tr>
<td>A2</td>
<td>20</td>
<td>5</td>
<td>1.5</td>
<td>3</td>
<td>70.5</td>
</tr>
</tbody>
</table>
TEM BF image (a) shows a layer of Y_2O_3 thin film with thickness about 25nm around the edge of particle. The film thickness is relatively homogeneous.

HREM image (b) shows the fine structure of the thin film. Most area of the film is amorphous and the corresponding FFT (Fast Fourier Transform) image show the diffusive feature.

There is crystal structure within film as FFT indicated. The embedded FFT shows the spots and image shows the orientation fringe. The growth of film may involve crystallization of Y_2O_3.

ODS Powder Fabrication

MA 956 ODS sample (Special Metals Inc.)

R1 sample with 15 hrs ball milling
TEM results

- For MA 956, many dislocations were found inside particles, indicating heavy deformation during ball milling as well as many tiny particles were embedded into particles. SAD shows particle is polycrystalline.
- For R1 sample, TEM image and SAD show the similar structure to MA 956, indicating heavy deformation, well mixed and polycrystalline structure.
Summary - ODS Powder Characterization

MCB processed ODS powders images, (a) TEM BF, (b) HR TEM, (c) STEM EDX

SEM micrographs of milled ODS powders for (a) 5 hrs, (b) 40 hrs, (c) 60 hrs, (d) 120 hrs, and (e) XRD spectrum.
University Turbine Systems Research

Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan

Tasks

1. Advanced Impingement
2. ODS Powders Fabrication and Characterization
3. ODS Coating (AM Assisted) (Preliminary results)
4. Microstructural and Mechanical Properties Characterization
5. Detailed Experimental Measurement and Validation
Task 4: Microstructural and Mechanical Properties Evaluations

Objective: Characterize the microstructural and mechanical properties of ODS coating under (1) dry air, and (2) highly moisture content

Approach
- Advanced microstructural characterization
 - OM, EDX, XRD, SEM, TEM
- Micro-indentation using in-house test rig
- Thermal cyclic tests

Controlled environment high temperature micro-indentation system

Schematic of the cyclic thermal exposure apparatus setup
Multiple Loading/Partial Unloading Micro-Indentation Technique Benefits

- Designed for TBC/Bond and ODS Coating specimen
- Measurement of surface stiffness responses as a means to correlate the evolution of the microstructural changes of the coating layer/Substrate subjected to high temperature thermal cycles.
- Can also be correlated to the damping effect
- No surface preparation needed

Applications:
- Elastic Modulus
- Stress-Strain Curve
- Indentation Creep
- High Temperature Characterization

Applications:
- Elastic Modulus
- Stress-Strain Curve
- Indentation Creep
- High Temperature Characterization

Potential:
- In Situ Material Characterization
- Portability
- Variable Influence Zone

Load Based vs. Contact Area Based

\[P = \frac{4}{3} \sqrt{\frac{R}{k_0}} h^{3/2} \]

Hertzian Spherical Contact Mechanics

where,

\[k_0 = \frac{1}{E_r} = \frac{1 - \nu^2}{E_d} + \frac{1 - \nu^2}{E_i} \]

\[\frac{dP}{dh} = \frac{2}{\sqrt{\pi}} E_r \sqrt{A} \]

Area Based

\[\frac{dP}{dh} = (6RE_r^2)^{1/3} \cdot P^{1/3} \]

Load Based (WVU)

\[\frac{dh}{dP} = C \times \left(\frac{1}{P^{1/3}} \right) \]

\[\left(\frac{dh}{dP} \right) = C \times \left(\frac{1}{P^{1/3}} \right) + C_s \]

\[y = mx + b \]

where,

\[a = \left(6RE_r^2 \right)^{1/3}, \quad b = C_s \]

Technique Benefits

- Designed for TBC/Bond and ODS Coating specimen
- Measurement of surface stiffness responses as a means to correlate the evolution of the microstructural changes of the coating layer/Substrate subjected to high temperature thermal cycles.
- Can also be correlated to the damping effect
- No surface preparation needed

•Controllable Influence Zone
- The overall response obtained is a contribution form different regions of the multilayered thermal barrier coating structure.
- As load increases, the influence zone increase as well.
Durability/Damage Assessment of Advanced Turbine Components

R = 1 mm
Durability/Damage Assessment of Advanced Turbine Components

Controlled Environment Indentation System

- Continuous Water or Air Cooling
- Applied Test Systems Resistance Coil Tube Furnace
- Humidifier Numerically Controlled by 3 Separate PIDs
- Copper Gaskets Insure Proper and Efficient Sealing at Elevated Temperatures
- Controllable Thermal Ramp Rate
- Potential to Vary Internal Pressure
In-situ micro-indentation stiffness response of APS/MCrAlY/RenéN5 coupon under cyclic oxidation room to 1100°C under air and wet (80% steam/20% CO₂) conditions

ODS specimen under cyclic oxidation room to 1100°C in air:
(a) weight gain, (b) micro-indentation stiffness response

Mechanical Properties Evaluations
Oxidation Kinetics – Stable NiO Formation

(a) oxide scale at 120 cycles

(b) EDX maps at 120 cycles

SEM metallographic cross-section micrographs of NiO oxide scale at 600 cycles
Task 3: ODS Coating (AM Assisted)

SCHEME

TOP VIEW

SIDE VIEW

ODS Coating

Substrate (Superalloy)

200 W

150 W

100 W

1

2

3

1

2

3

1

2

3

Substrate

ODS Coating

Substrate

ODS Coating

Substrate
Thank You