Advanced Manufacturing for Large Industrial Gas Turbines
- Drivers for LGT manufacturing innovation
- Key components for Advanced Manufacturing
- Testing, validation and implementation
- Challenges & requirements for implementation of SLM in turbine production
- Conclusions
Drivers for Large Gas Turbine Manufacturing Innovation

Business drivers/
Customer requirements

Cost
- First cost
- Life cycle cost
- Operation cost

Performance
- Plant power
- Plant efficiency

Capabilities
- Emissions
- Operational flexibility
- Regulatory compliance
- Upgradeability
- Reliability, availability
- Time-to-market

Turbine Inlet Temperature °C

- 1956
- 1966
- 1976
- 1986
- 1996
- 2006
- 2016

- 800
- 1200
- 1600
- 2000
- 2400

- F (56% Combined Cycle efficiency)
- G (58% Combined Cycle efficiency)
- H (>60% Combined Cycle efficiency)

Unrestricted © Siemens Energy Inc. 2015 All rights reserved.
Key Components for the Development of Future Gas Turbines

- Compressor
 - Increase of mass flow
 - Increase of pressure ratio
 - 3D aerodynamics
 - Reduction of aerodynamic losses

- Combustion
 - Higher combustion temperatures
 - Optimized burner (fuel flexibility)
 - Reduced emission
 - Increased efficiency

- Turbine
 - Higher turbine inlet temperatures
 - New materials and coatings
 - Improved cooling and sealing
 - 3D aerodynamics, loss reduction

These goals can not be reached with conventional development methods, conventional designs and conventional manufacturing technologies!
Use Cases for SLM as AM Technology

Lead time and performance gains are the major drivers

Technology Validation
- **Rapid Development**

Production
- **Rapid Tooling**
- **Rapid Manufacturing**

After Market
- **Rapid Repair / Spare Parts**

<table>
<thead>
<tr>
<th>Category</th>
<th>Technology Validation</th>
<th>Production</th>
<th>After Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead time & Availability</td>
<td>⬆️</td>
<td>⬆️</td>
<td>⬆️</td>
</tr>
<tr>
<td>Costs</td>
<td>⬆️</td>
<td>⬆️</td>
<td>⬆️</td>
</tr>
<tr>
<td>Performance & Innovation</td>
<td>⬆️</td>
<td>⬆️</td>
<td>⬆️</td>
</tr>
</tbody>
</table>

Combustion
- Injectors and nozzles
- Mixer/Swirler
- Heat shields
- Instrumentation
- Bending tools for fuel pipelines
- Customized tool holders
- Injection nozzles
- Mixer/Swirler
- Burner heads
- Burner repair
- Spare parts on demand
- Upgrades

Turbine
- Mock-up parts for process development
- Technology and product validation
- Special tools
- Seals for test rigs
- Expandable parts for coating
- Blades/vanes with advanced cooling schemes
- Heat exchangers
- Seal plates
- Coupons for the repair of complex components
- Refurbishment
SLM Rapid Manufacturing and Rapid Repair
Additive manufacturing has arrived in customer engines

Rapid Manufacturing

<table>
<thead>
<tr>
<th>Driver</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long lead times</td>
<td>Lead time reduction by six months</td>
</tr>
<tr>
<td>Long time line for implementation of new designs</td>
<td>short term implementation of re-designs</td>
</tr>
</tbody>
</table>

Rapid Repair

<table>
<thead>
<tr>
<th>Driver</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long repair times</td>
<td>Significant lead time reduction by 90 %</td>
</tr>
<tr>
<td>Costs for repair</td>
<td>Significant cost reduction (-30 %)</td>
</tr>
</tbody>
</table>
Testing and Validation Chain
Change in R&D paradigms

Integrated development: accelerated iteration cycles in few months

3D Design ▶ SLM processing ▶ Post processing ▶ Instrumentation ▶ Testing

Conventional process
“Testing is final validation at the end of development process”
- Sequential development processes
- Conservative development approach
- Moderate development goals
- Long development cycles

Unrestricted © Siemens Energy Inc. 2015 All rights reserved.

Novel paradigm
“Testing is integrated part of development process”
- Parallel and integrated development processes
- Radical development approaches
- Ambitious development goals
- Accelerated development goals, short iteration cycles
Conventional development cycle corresponds with standard manufacturing processes

Rapid Development

Benefits:
- Reduced risk in critical path development steps
- Design optimization
- Reduced development time
SLM Process Chain for Production

Line integration is the prerequisite for industrialization

Challenges:
- Integration of horizontal AND vertical process chain
- Industrial machine standards
- Standardized processes, materials, and interfaces
- **Costs:** Implementation, validation and production
- Component size & complexity
- **Location:** Ability to source locally on globally basis; Export compliance
- **Skill base:** Qualified labor
- **Incoming material:** Quality control; storage; handling; mixing/blending
- **Sourcing:** Sole Source vs multi-source – stability, competition
- **Inspection & Acceptance criteria:** Destructive; NDE; sampling
- **Vendor qualification and surveillance**
- Compatibility/co-location with other manufacturing processes
- **Re-work and non-conformance** – scrap rates
- **Residual powder / Revert**
- **Intellectual property:** Component designs; process parameters
- ...
Conclusions
AM is not just a trend! It has already changed the way of producing and testing components.

Opportunities

- SLM offers unique potential for the development of future gas turbines:
 - **Design innovations** → gain in performance
 - **Efficient repair** and refurbishment applications
 - **Paradigm change** in **development** and **validation**
Conclusions

AM is not just a trend! It has already changed the way of producing and testing components.

Challenges

- Industrial implementation of SLM has successfully started **BUT** additional development needs are substantial:
 - Capacities, build chamber sizes
 - **Costs**
 - Productivity → accelerated SLM processes (multiple lasers, laser arrays)
 - **Quality**
 - Robustness and repeatability → process control
 - Standardized processes, machines and materials
 - Industrial health and safety standards
 - **Line integration** → standardized interfaces are required
 - …
Thank you
Dr. Allister James
Manufacturing Development & Industrialization

Siemens Energy Inc.
4400 Alafaya Trail
Orlando, FL 32826
USA

Phone: +1 407-736-7206
Fax: +1 407-736-5014
Mobil: +1 407-968-7490
E-mail: allister.james@siemens.com

siemens.com/energy
Disclaimer

This document contains forward-looking statements and information – that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as “expects”, “anticipates”, “intends”, “plans”, “believes”, “seeks”, “estimates”, “will” or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens’ control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens’ filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC’s website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates or their respective owners.