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Motivation

1. Measure ignition probabilities for a number of 

fuels in a flow that can be easily modelled 

2. Initial focus on chemical effects by prevaporizing

fuels

3. Develop reduced order model that captures 

important physics

Objectives

• Significant difference in probability among fuels observed  

• Ignition probability is  strong function of equivalence ratio

• Flame growth rate (from chemiluminescence) indicates similar 

flame speeds for all fuels but with delayed beginning

• Bifurcation in temperature from reduced-order modeling 

demonstrates ability to classify successful vs. unsuccessful 

ignition
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• Reliable ignition is critical for turbine engine operation

• Most forced ignition studies are for premixed/ uniform 

conditions, e.g., SI engines

• Need better understanding of forced ignition in turbine 

engine relevant flow; for example, lack of fuel near igniter 

• Previous work examined natural gas fuel systems, current 

focus is jet fuels and fuel composition effects

• Investigate non-vaporized liquid droplet ignition and develop 

parameters to characterize ignition

• Compare simulation results of all fuel models. Incorporate two-

phase into current model 

Conclusions

Future Work

Ignition Boundaries:

Observations:
• Kernel temperature when fuel-air 

mixture entrainment begins and 

amount of available heat release 

(higher equivalence ratios) key to 

successful ignition  

• Fuel decomposition occurs in s, 

oxidation of decomposition products 

occurs in 10’s s  

• Successful ignition requires initial heat 

release rate to outweigh kernel cooling 

from dilution (entrainment)

• Modeling matches experimental 

trends

Experimental Methods

Figure 1. Schematic of stratified flow setup

Figure 2. Schematic of the liquid fuel 

vaporization setup

Flow facility1:
• Ejected plasma kernel (into crossflow) 

generated by aircraft type igniter

• Fuel-air stratification allows initial kernel 

evolution before encountering fuel

• achieved by splitter plate; premixed 

fuel-air in main, air only in kernel 

flow

• also creates nearly uniform velocity in 

cross-flow  

Pre-vaporizer:
• Fuel sprayed into heated carrier air; 

vaporized mixture injected into main flow 

air (440 K)

Diagnostic methods:
• Integration of broadband emission for 

ignition probability

• High frame rate mode for schlieren

imaging of kernel growth and 

chemiluminecense

Reduced-Order Modeling
M odeling tool:

• Cantera2: Open-source object oriented 

software tools for solving problems 

involving chemical kinetics, 

thermodynamics, and transport 

process
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M echanisms:
• Stage 1: SforzoairNASA9.cti1 – dry air plasma

• Stage 2: POSF10264.cti3 – A2 fuel mechanism

Figure 3. Travel Path of an air-

plasma(spark) kernel 

Figure 4. Conceptual representation of a 

Perfectly-Stirred Reactor(PSR) 

Ignition Probability:

• Equivalence ratios φ~1.01.6

• Ignition probability defined as

𝑃(𝑖𝑔𝑛) =
𝑁𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑁𝑡𝑜𝑡𝑎𝑙

• Fuels ranked at φ=1.5

Observations:

• Statistically meaningful 

variation between fuels  

• Three fuels selected

for further study

C-5 (high), A-2 (med), 

C-1 (low)

Figure 5. Time-integrated image of successful 

ignition (top); ignition probability variation 

with main zone equivalence ratio (bottom)

Figure 6.  Ranking of ignition 

probability for φ = 1.5.

High Speed Imaging:

Observations:
• Similar turbulent flame speed (growth) 

for all fuels, but delayed growth for low 

ignition probability fuel

• Growth in initial plasma kernel due to 

entrainment of ambient fluid, ~60 mg/ s 

from estimated volume growth rate

Figure 7. Visible chemiluminescence  

movie frames of forced-ignition kernel 

growth with edge tracking (φ = 1.5)

Figure 8. Chemiluminecence area 

growth from edge tracking; C-1 results 

also shown shifted in time

Kernel Temperature History:

Kernel Species Histories:

N
2

T

te
st

 s
ec

ti
o
n

filter

needle 

valve

 flow 

meter

 f
lo

w
 

m
et

er

 flow 

meter

 

regulator

 re
g
u
la

to
r

 fill

drain

3-way 

valve

 valve

 v
al

v
e

 vent

fuel

N
2

 pressure 

transducer

heater heater

heaterglobe 

valve

orifice

th
er

m
o
co

u
p
le

 lab supply air

 vaporized 

fuel in air

 h
ea

te
d
 a

ir c
ar

ri
er

 a
ir

T

 valve

0.6 ms 1.0 ms 1.4 ms
6 m/s

Two-staged Perfectly-Stirred Reactor(PSR)1:

• First stage simulates entrainment of dry-air into air-

plasma(spark) kernel

• Second stage simulates entrainment of fuel-air mixture at 

certain equivalence ratios after the first-stage air-plasma 

kernel

• Mass entrainment rate obtained from schlieren

imaging
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Figure 9. Initial air-plasma kernel 

growth from high speed schlieren

Figure 10. Kernel temperature for 

90s transit time, 400K cross-flow and 

various main equivalence ratios

Figure 11. Kernel species mole fractions 

for successful (solid) vs. unsuccessful 

(dashes) ignition cases

A-2

all  cases fail

successful igntion

φ decreasing

Figure 12. Boundary map of cross-

flow temperature and transit time for 

successful ignition

test cases
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