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Figure 2. Schematic of the liquid fuel
vaporization setup
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* Reliableignition iscritical for turbine engine operation

 Most forced ignition studies are for premixed/ uniform
conditions, e.g., Sl engines

* Need better understanding of forced ignition in turbine
enginerelevant flow; for example, lack of fuel near igniter

* Previouswork examined natural gasfuel systems, current

Figure 4. Conceptual representation of a
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Figure 5. Time-integrated image of successful
Ignition (top); ignition probability variation
with main zone equivalence ratio (bottom)
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« Sgnificant differencein probability among fuels observed

* |Ignition probability Is strong function of equivalenceratio

 Flame growth rate (from chemiluminescence) indicates similar
flame speeds for all fuels but with delayed beginning

« Bifurcation in temperature from reduced-order modeling

Figure 10. Kernel temperature for
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various main equivalence ratios

Figure 12. Boundary map of cross-
flow temperature and transit time for
successful ignition
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