Measurement of Convective and Radiative Heat Transfer in Flame Impingement
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Motivation: Characterize complex heat loads Proof of concept experiment: Flame perpendicular and parallel to the target surface, using
within gas turbine combustors a commercially available butane torch.
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X emissivity opaque paint. Uncertainties < 159% for convective heat flux [1] Popiel, Cz. O., Van der Meer, Th. H., and Hoogendoorn, C. J.,"Convective Heat Transfer on a Plate in an Impinging Round Hot Gas Jet of Low Reynolds
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side material side captures temperature history as the
target wall interacts with the flame. Current work: Applying these ideas to an optical combustor and a dedicated small scale
Concept of the measurement: Impingement experiment.

Radiation transmits through the material and heats the opaque coating
instantaneously, while the convective load takes a finite amount of time to
conduct through the material and reach the coating.

Challenges:

e Varying heat fluxes with time: fuel ramp-up

e Soot accumulation on the surface impacting
transmission

 Determination of adiabatic wall temperatures to
obtain heat transfer coefficients.

* 3D conduction effects

Optical combustor with internal wall coated with high
emissivity/optically opague paint.
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1D finite difference direct model was coded. The model is evaluated iteratively
with different convective and radiative heat loads on the flame side
(@rad.i » Qcony) until the backside modeled and measured temperature histories

match.
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