Measurement of Convective and Radiative Heat Transfer in Flame Impingement

David Gomez-Ramirez¹, Srinath V. Ekkad¹, Brian Lattimer¹, Hee-Koo Moon², Yong Kim², Ram Srinivasan², Robin Ames³ ¹Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia ²Solar Turbines, Inc., San Diego, California ³National Energy Technology Laboratory, Morgantown, West Virginia

Motivation: Characterize complex heat loads within gas turbine combustors

Demands on gas turbine combustors:

- Durability ($\sim 30\,000$ hours)
- Emission limits: 15-42 ppm NOx (new stationary gas turbines)

ratios, higher turbine inlet temperatures

relative contribution of radiation and convection

Lack of experimental data for empirical design correlations:

- pipes
- and non-premixed systems

radiation through an optically thin material

Radiation transmits through the material and heats the opaque coating

match.

Solar Turbines A Caterpillar Company