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Outline 

• Overview – sCO2 power cycles 

• sCO2 turbomachinery at GE 

• 10 MWe turbine 

• 450 MWe turbine 

• End seals for sCO2 turbines 

• sCO2 Seals test rig 
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sCO2 Application Space 
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Recompression sCO2 Cycle 

• Recompression sCO2 cycle for CSP and utility-scale applications  

• Recompression loop added for better recuperation 
 

• Ongoing research in developing power plant components (turbines, compressors, 
recuperators) 
 

• This presentation focuses on turbine maturation and turbine end seals for enabling higher 
cycle efficiencies 
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sCO2 power cycle roadmap & technology gaps 

Parallel development on components (Seals, bearings, valves) and materials to enable 
higher efficiencies 
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10 MWe SunShot turbine 

Not to scale 

• Very high power density turbine for CSP applications 

• Key features 

• Supercritical CO2 aero design 

• Seals with thermal management 

• Bearings and rotordynamics 

 

10 MWe turbine  

test stand 

Thermodynamic cycle 

10 MWe turbine rotor 
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Test Loop –10 MWe turbine 
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450 MWe – Layout Conceptual design &  Cycle design 

450 MWe Thermodynamic cycle 

Single shaft , single speed option 

Dual shaft , dual speed option 

Final turbine layout – single shaft , single speed, dual flow, single casing 

Reheat cycle with single-shaft, single speed layout and dual flow turbines to 
maximize efficiency 
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450 MWe Conceptual Design 

Final layout – single shaft , single speed, dual flow, single casing 

Systems Aero & Mechanical  Rotordynamics 

Turbine concept analyzed with thermodynamic cycle optimization, 
turbine aerodynamic and rotordynamic calculations 
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450 MWe turbine-compressor layout 
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Key Features 
 
• 450 MW net electric power 

 

• 3600 rpm, single-shaft 
 

• Reheat cycle 52% efficiency 
 

• Single casing dual flow LPT, dual flow HPT 
 

• Single casing back-to-back compressors 
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Motivation for using non-contact face seals (dry gas seals) 

• Laby seal:  

• Seal physical clearance varies during start-up, shut-down and cycle variations.  

• Teeth radius can be designed only for one operating condition leading to non-optimal 
gap and leakage loss at other operating points 

• Non-contact Face seals 

• Stationary ring axially pushed towards the rotating ring. Spring biasing ensures a 
small physical gap under all operating conditions 

• Stationary and rotating rings have spiral grooves (or some other geometry) that 
generates lift-off pressure with speed & avoid contact 

Rotor 

Non-adaptive Laby seal 

Phigh 

Plow 

Seal physical 
clearance 

Adaptive Dry gas seal 

Spiral groove 
geometry on 

rotor 
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End seals for sCO2 turbines 

 

• sCO2 cycles are unique 

• closed loop (unlike open loop gas turbines)  

• leaked CO2 needs to be recompressed as vapor (efficiency loss) unlike steam where the 
end leakage can be condensed to liquid and pumped back 
 

• Seal CO2 leakage has implications for cycle efficiency as well as CO2 replenishment cost 

 

Difference between Steam and 
CO2 leakage flow compression 

End seal layout for a sCO2 
turbine 
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Turbine End Seal penalty analysis 

• 2 x end seals on 450 MWe turbine are worth 0.55% cycle efficiency (1% loss of efficiency 
is worth $12/KWe) 

• Alternate ways of regaining this efficiency (like increasing inlet temperature) are costly 
compared to developing seals 

• Low-leakage seals are an effective method of keeping sCO2 cycles competitive over 
other power cycles 

2 X  Turbine End Seals 
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Seal Design Challenges 
 

• Maintaining parallelism between rotating & stationary rings is needed for successful seal operation 

• Pressure & thermal loads, manufacturability at large diameter limit simple scaling of existing designs 

• Innovative seal design features & detailed analysis needed to ensure parallelism 
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Seal Concept 

• Springs & pressure bias the stationary ring 
towards the rotor 

• Spiral grooves generate separating force 

• Seal tracks rotor axial transients 
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sCO2 Seals test rig concept 

Skid/frame 
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sCO2 Test Loop Concept 

Seal test rig concept developed for high pressure, high temperatures  and large diameter seals 
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Summary 

• sCO2 turbine development at GE 

• 10 MWe CSP application 

• 450 MWe utility-scale application 

 

• Seal leakage can be significant penalty on cycle efficiency 

 

• Seal concept and analysis, along with a Seals test rig 
concept 
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