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Reaction Chemistry & Engineering Occurs at ALL Scales IN=TL
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Transformational Energy Technologies Require Input & Mastery at ALL Levels
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REMS Will Reduce Time, Cost, and Risk

Gasification Challenges:

How do we address?:

@

New approaches for coal to power/chemicals

technologies SSSS to develop & deploy
Capital costs for plant (SSSS)

Varying feedstocks, distributed power
generation

Reduce time/risk scale up
Reduce build/capital costs
Fuel flexible designs, distributed systems

Enhanced reactor/process performance

— Reaction manipulation at the particle level

CFD led Reactor Design, Advanced Manufacturing, & Reaction Intensification
offer unique opportunities to address these challenges
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How Will REMS Differ from Traditional

Approaches

Traditional

Example of Emerging
Industrial Approach

Velocys: Small, Modular
& Efficient GTL Reactors

Beat economies-of-scale by using

e CFD to rapidly create novel
reactor configurations

* Microwave, plasma etc. to
intensify reactions

e Advanced manufacturing to
replicate reactors at low cost

e Unreliable scale up
* Expensive, long development
* Incremental improvements
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Radically Engineered Modular Systems
(REMS): Research Areas

 CFD-led reactor & process design (Bill Rodgers)
— Development of physics-based submodels
— CFD Optimization and Toolsets

Breault)
— 3D printing for rapid testing
— Development of characterization tools

e Advanced Manufacturing and Reactor Materials
Development (James Bennett)

— Materials for unusual reactor geometries & conditions
— Rapid, cheap, fabrication techniques

e Reaction Intensification (Dushyant Shekhawat)
— Microwave/Plasma driven reactors
— Catalyst Design
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* Reactor Characterization and CFD Model Validation (Ron




Radically Engineered Modular Systems (REMS)

Use CFD Simulation-Based Optimization for Reactor Design

Build on Existing Techniques
* Use of CFD-Based Optimization is growing for single phase

applications

— Proven technique in many engineering applications - chemical
process, aerospace, turbomachinery, automotive

e Optimization of airfoil shape for lift and drag
e Optimization of heat exchanger tube shape, size, location
* Optimal combustor design

* REMS will develop, validate, and apply a Multiphase CFD-based
Optimization Toolset

— Multiphase CFD brings new challenges to the optimization process

e Complex multiphase physics require accurate submodels for flow,
heat transfer, chemical kinetics, coupling between phases

* Very computationally intensive

e Potential for huge datasets resulting from pilot and industrial
scale applications

— The new software capability will be based on the NETL MFiX Suite of
multiphase flow CFD software
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Radically Engineered Modular Systems (REMS)

Use CFD Simulation-Based Optimization for Reactor Design

User Interface and Toolset to
Manage the Optimization Process

 Design and develop GUI-based, Multi-
objective Optimization software framework

— Code infrastructure for managing the optimization process

— methodologies and code to create and manage reactor
models created using MFIX Suite of multiphase flow
software

* The modeling tools will become part of thg,ﬂﬁm_E o
publicly available, Open Source MFIX Suite

of codes (https://mfix.netl.doe.gov)
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Radically Engineered Modular Systems (REMS)

Use CFD Simulation-Based Optimization for Reactor Design

Use CFD Simulation-Based Optimization
for Reactor Design

]
AC

Effect of Operating
Conditions

e  Optimization process will investigate radically different
reactor geometries

— Allow for precise manipulation of different coal and biomass
particles

* segregation of low ash melting particles in a lower temperature

part of the reactor '
* continuous removal of ash or volatiles as they are created,
* segregation of char to a higher temperature part of the reactor

* segregation of catalysts and reactive particles types for more
efficient conversion

» use of neutral/reactive particle addition and removal
—  Optimize reactant and product gas flow

* improve particle-gas contacting to better control carbon
conversion and product composition

e Control heat addition/removal, etc.

Time = 9.50 sec
Geometry Changes

Scale Up Performance
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Advanced Reactor Characterization:

3D Printing of CFD designed reactors

] Printed & Assembled
CAD Design Contactor
of gas-liquid

contactor
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CFD simulation
| Of gas flow
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e T Image from J Bara et. al. Nanomaterials and Energy 2013
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Advanced Reactor Characterization:

Validating & Improving CFD Models

High Speed Particle
Imaging & Flow Characterization

Electro Capacitance
Volume Tomography

Laser Doppler Velocimetry
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Advanced Manufacturing: Making REMS a Reality N=TL

“Traditional”

Syngas
I

e Brick lined reactors
unsuitable for unusual
geometries

e T P & Flow Fields
require differing materials
in reactor zones

Gasification
Chamber

-a— Char

e Subtle variation of reactor

— size & characteristics for
varying feedstocks requires
P —— HOT!! variations of materials used
S Ceramic
8 mm
Few methods exist to
100 microns manufacture reactors
with these properties
ey ining Cold
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Reaction & Process Intensification:

Non-traditional Energy sources

Microwave Enhanced Boudouard Reaction
AH = 172 kJ/mol

C + CO, = 2CO

Altered kinetics & equilibrium constants

Thermal

Microwave
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MWs, plasmas, etc deposit
energy in “non-thermal”
manner

Product streams deviate
from thermodynamic
predictions & traditional
thermal reactors
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Reaction & Process Intensification:

Catalyst Design & Engineering

Nano-Fe.C,
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Encapsulation in CNTs
improves Fe active phase
stability for FT rxns

Nano Fe-carbides are now
possible in high yield

Possible to design & optimize
materials specifically for use
with microwaves sources etc




It’s All About a Clean, Affordable Energy Future

For More Information, Contact NETL

the ENERGY lab

Delivering Yesterday and Preparing for Tomorrow
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