

Driving Innovation ♦ Delivering Results

Multiphase Flow Science at NETL

Multiphase Models to Advance Energy Technologies

William A. Rogers, Ph.D., P.E.

Multiphase Flow Sciences Team

August 2015

NETL Multiphase Flow Science – 30 years of R&D

- Development, Validation, Application and Support of Practical Multiphase Flow Simulation Tools
 - Tools to guide the design, operation, and troubleshooting of multiphase flow devices
 - Emphasis on Fossil Fuel Technologies (e.g., coal gasifiers, CO₂ capture devices, Chemical Looping)

- 30+ Engineers and Scientists on the team
 - Open-source Software Tools
 - MFiX Suite of Multiphase CFD Software
 - C3M Multiphase Chemistry Management Software
 - Multiphase experimentation for model development and validation
 - High quality data made available to the public
 - Funded research with universities and industry
 - University and Industrial stakeholders help to guide MFS program
 - Access to university capability
 - Access to industrial applications

MFiX Suite - managing the tradeoff between accuracy and time-to-solution

Direct Numerical Simulation: Very fine scale, accurate simulations for very limited size domain

Discrete Element Method: Track individual particles

Hybrid: Continuum and discrete solids coexist

Two-Fluid Model: Gas and solids form an TFM interpenetrating continuum

Particle-in-Cell: Track parcels of particles and approximate collisions

Reduced Order Models: Simplified models with limited application

Model Uncertainty

MFiX Suite

MFiX Suite – State of Development

Goal is to have all codes with full set of capabilities

	Serial	†DMP	‡SMP
Momentum Equations	•	•	•
Energy Equations	•	•	•
Species Equations	•	•	•
Chemical Reactions	•	•	
Cartesian cut-cell	•	•	

- - implemented and fully tested
- o implemented with limited testing
- ¬ not tested or status unknown

MFiX Suite – Open Source Toolset

MFiX Suite of software has a large (>3500) user base

FY14 new regis	strations	229
_	University	175
_	Industry	29
_	National Labs	11
_	Others	14
Total MFIX reg	3,513	
_	University	2506
_	Industry	559
_	National Labs	163
_	Other	285

C3M – Chemistry Support for CFD

What Does C3M Bring to the User?

- Easy, Intuitive, Reliable, and Graphical User Interface
- Comprehensive interface between reliable sources of kinetic data and reacting, multi-phase CFD models
- "Virtual Kinetic Laboratory" for quickly assessing the validity of a chemical equation sets before going to full scale, expensive models
- Seamless formatting and units management for code specific implementation
- Advanced Chemistry Analysis and Development Tools
- Open source for collaboration and development

136+ User Downloads 96+ Version 4.0 Downloads (300% increase) Version 5.0 Coming Soon!

Recent Developments in C3M

Virtual Experimental Capability (TGA/Drop Tube)

Neural Network Surrogates

User-Defined Chemistry

1) Select Species

2) Define Chemistry

User Defined Modules

MFiX Graphical User Interface

Makes MFIX Easy to Use

- Providing intuitive tools to create, compile, run, and post process MFIX models.
- Cross platform, binaries available (Windows, Linux).
- Written in Python.
- Integration with MFIX website (download mfix).

Download Today: mfix.netl.doe.gov

Tutorials on YouTube

Next Release: Workflow - Automating Design of Experiments

The GUI

Internal Console

Text Editor

Documentation Viewer

Grid Editor

MFS support of the Gasification Program

- Development of Reacting Multiphase Models for Advanced Gasification Processes
 - Model Development and Optimization
 - Verification, Validation, and Uncertainty
 Quantification Tools and Processes for
 Multiphase Flow
 - Physical Sub-Models, Pre- and Post-Processing Tools for Model Enhancement
 - Model Application And Validation
- Experimentation for Model Development and Validation
 - Operation of Small-Scale Fixed, Bubbling, and Circulating Fluidized Beds for Validation

MFS support of the Gasification Program Model Development and Optimization

- Speed and accuracy improvements to MFiX-TFM for industrial scale gasification application
- Enhancement to MFiX-DEM for large-scale reacting flows
 - Efficiency
 - Improved parallel performance
- Enhancement to MFiX-PIC for industrial scale gasification application
 - Reacting flow capability
 - Complex geometry
- Optimization of all codes for new supercomputer architectures

MFS support of the Gasification Program

- Implementation of "Method of Manufactured Solutions" for MFiX Verification
- Verification "Test Harness" executed daily to monitor code development process and ensure code quality
- Multiphase Flow Validation Problem Set
 - Validation Hierarchy
- Develop and Demonstrate Methodologies to Quantify Uncertainty in Model Predictions
 - Develop and distribute a UQ Toolset
- Multiphase Flow CFD "Best Practices"

Validation Hierarchy

Sources of Uncertainty in Model **Predictions**

- Input parameter
- Surrogate model
- Model form
- Experimental data;
- Spatial discretization
- Time Averaging

MFS support of the Gasification Program

- Enhance C3M Capabilities
- Enhance MFiX GUI Capabilities
- "Filters" for capturing small-scale effects for more accurate scale-up
- Particle size distribution
- Cohesion/Agglomeration
- Improve heterogeneous chemistry
- Improve radiative heat transfer modeling
- Bring all codes in the MFiX Suite to same level of capability

 Application to TRIGTM Gasifier Riser and Validation with Plant Data for Mississippi Lignite feedstock

 Application to TRIG[™] Gasifier and Validation with Data for Mississippi Lignite feedstock

- Application to Integrated Waste
 Treatment Unit Gasifiers Idaho National
 Lab
 - Develop and validate MFiX-TFM models of the Denitration Mineralization Reformer (DMR) and and Carbon Reduction Reformer (CRR).
 - Validate with DMR (mock up) pressure data for cold flow conditions
 - Validate with CRR gas composition data for reacting conditions
 - Provide model-based information to better understand chemistry and hydrodynamics of the vessels

30 nozzles for the 2 distributor rail 18 nozzles on side walls

 Validate with DMR pressure data for cold flow conditions

Effect of Bed Height on Bubble Behavior

MFS support of the Gasification Program

Model Application and Validation

 Validate with CRR gas composition data for reacting conditions

Composition

- 10 gas species (Soot, O₂, CO, CO₂, CH₄, H₂, H₂O, N₂, HCN, C₂H₆)
- 2 solids phases: coal (C, volatile matter, moisture, ash) and Bauxite
- Total of 30 transport equations (continuity, momentum, energy, species)

Heterogeneous chemical reactions:

- Coal moisture release : $H_2O_{(l)} \rightarrow H_2O_{(g)}$

Pyrolysis: $VM \rightarrow 1.3788CO + 0.48148CH_4 + 2.87373H_2 + 0.128615HCN + 0.0128449C_2H_6$

 $\begin{array}{lll} - & \text{Steam gasification:} & & & C + H_20 \leftrightarrow CO + H_2 \\ - & & \text{CO}_2 \text{ gasification:} & & C + CO_2 \leftrightarrow 2CO \\ - & & \text{H}_2 \text{ gasification:} & & C + 2H_2 \leftrightarrow CH_4 \\ - & & \text{Char combustion:} & & C + O_2 \leftrightarrow CO_2 \end{array}$

Homogeneous chemical reactions:

- Water gas shift: $CO + H_2O \leftrightarrow CO_2 + H_2$

- CO combustion: $C0 + \frac{1}{2}O_2 \leftrightarrow CO_2$

- H_2 combustion: $H_2 + \frac{1}{2}O_2 \leftrightarrow H_2O$

- CH4 combustion: $CH_4 + 2O_2 \leftrightarrow CO_2 + 2H_2O$

Kinetics implemented

Time = 0.00sec	[ime = 0.00 sec
---------------------------	-----------------

	Flow rate	0,	CO ₂	H ₂ O	N ₂
Ехр.	Nominal	5.03%	23.67%	34.48%	36.83%
MFiX	Nominal	5.39%	23.00%	34.95%	36.66%
MFiX	0.25xNominal	0.00%	20.98%	37.59%	34.43%
MFiX	0.10xNominal	0.00%	18.58%	38.81%	33.82%
MFiX	2.00xNominal	15.98%	17.83%	27.27%	38.93%

MFS support of the Gasification Program

Experimentation for Model Development and Validation

- Operation of Small-Scale Fixed, Bubbling, and Circulating Fluidized Beds for Validation
 - Small Fixed Bed for heat transfer, kinetics (1in Dx 6 in H)
 - Bubbling Fluidized Bed (4in D x 72in H) —
 - Rectangular 2-D bed (2in x 0.125in x 18in H)
 - Small Scale Circulating Bed (1in D x 48in H)
- Pilot-Scale Cold Flow Circulating Bed (12in D x 60 ft H)
- Flow control, measurement, diagnostics
 - High Speed PIV
 - LDV
 - Low and High Speed Pressure
 - High Speed video
 - Image analysis
 - Tracer gas

Experimentation for Model Development and Validation

- Small-Scale Bubbling Bed experiments performed with NETL
 CO₂ Sorbent Particles to validate MFiX-TFM
 - excellent agreement with fixed bed tests

Experimentation for Model Development and Validation

• 2-D bed being used for detailed measurements for validation data

Experimentation for Model Development and Validation

High Speed PIV for local particle velocity, solids concentration

FCC at U = 2Umf

Frame = 400-600

Radically Engineered Modular Systems (REMS)

Use CFD Simulation-Based Optimization for Reactor Design

Build on Existing Techniques

- Use of CFD-Based Optimization is growing for single phase applications
 - Proven technique in many engineering applications chemical process, aerospace, turbomachinery, automotive
 - Optimization of airfoil shape for lift and drag
 - Optimization of heat exchanger tube shape, size, location
 - · Optimal combustor design

- REMS will develop, validate, and apply a <u>Multiphase CFD-based</u>
 Optimization Toolset
 - Multiphase CFD brings new challenges to the optimization process
 - Complex multiphase physics require accurate submodels for flow, heat transfer, chemical kinetics, coupling between phases
 - Very computationally intensive
 - Potential for huge datasets resulting from pilot and industrial scale applications
 - The new software capability will be based on the NETL MFiX Suite of multiphase flow CFD software

Radically Engineered Modular Systems (REMS) Use CFD Simulation-Based Optimization for Reactor Design

User Interface and Toolset to Manage the Optimization Process

- Design and develop GUI-based, Multiobjective Optimization software framework
 - Code infrastructure for managing the optimization process
 - methodologies and code to create and manage reactor models created using MFIX Suite of multiphase flow software
- The modeling tools will become part of the publicly available, Open Source MFIX Suite of codes (https://mfix.netl.doe.gov)

Radically Engineered Modular Systems (REMS) Use CFD Simulation-Based Optimization for Reactor Design

Use CFD Simulation-Based Optimization for Reactor Design

- Optimization process will investigate radically different reactor geometries
 - Allow for precise manipulation of different coal and biomass particles
 - segregation of low ash melting particles in a lower temperature part of the reactor
 - · continuous removal of ash or volatiles as they are created,
 - segregation of char to a higher temperature part of the reactor
 - segregation of catalysts and reactive particles types for more efficient conversion
 - use of neutral/reactive particle addition and removal
 - Optimize reactant and product gas flow
 - improve particle-gas contacting to better control carbon conversion and product composition
 - Control heat addition/removal, etc.

Scale Up Performance

Summary

- Multiphase Flow Science at NETL has a long and successful history of R&D
- Our emphasis is on Multiphase CFD for dense, reacting flow
 - MFiX Suite of open source, multiphase CFD software
 - Development, VV&UQ, Application and Support
- Experiments designed for model validation are critical to our program
- Gasification is a key focus for code capability development
- The goal is a practical and useful toolset for industry

It's All About a Clean, Affordable Energy Future

For More Information, Contact NETL

Delivering Yesterday and Preparing for Tomorrow

