

Alstom's Limestone-based Chemical Looping Development For Advanced Gasification DOE/NETL Agreement DE-FE0023497

Armand Levasseur ALSTOM Power Inc.

DOE Workshop: Gasification Systems and Coal & Biomass to Liquids

Morgantown, WV August 10, 2015

Alstom Limestone Chemical Looping Process Key Attributes

- Avoids large investment costs and parasitic power associated with cryogenic air separation units (ASU's),
- Flexibility for coal-based power generation with CO₂ capture from coal via combustion/steam generation or hydrogen production/ GTCC as well as syngas for chemical feedstock,
- Uses abundant, low cost limestone to provide oxygen carrier,
- Builds upon Alstom's proven CFB technology and uses conventional materials and fabrication techniques,
- Techno-economic assessments consistently show Chemical Looping-based power generation systems have the potential for the lowest costs of electricity with $\rm CO_2$ capture.

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 2 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Limestone Chemical Looping Process: **Options and Applications**

Option 1 – Combustion with CO2 Capture – LCL-C[™]

Option 3 – Hydrogen with CO2 Capture – LCL-H2™

Main

Combustion

- CO₂ Capture PC/CFB Retrofit
- CO₂ Capture-Ready Power Plant
- Advanced Steam Cycles with CO₂ Capture

Syngas

- IGCC with or without Down-Stream CO₂ Capture
- IGCC with Water-Gas Shift for H2 (CO₂ Capture)
- Industrial Syngas production
- Coal-to-Liquid Fuels

Hydrogen

- Fuel Cell Cycles with CO₂ Capture
- Hydrogen for IGCC with CO₂
- Industrial Hydrogen with CO₂

Reducer (Fuel Reactor) $C_{fuel} + CO_2 + Heat \rightarrow 2CO$ $2CO + CaSO_{4} \rightarrow CaS + 2CO_{2}$

ALSTOM

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 - P 3 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Alstom LCL-G[™] System Concept Near-Term Syngas

© ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Techno-Economic Study: LCL-Gasification

Study Cases:

Two cases compared against DOE's Baseline Cases:

- LCL-G[™] based power plant with >90% carbon capture (IGCC using H₂ product gas)
- LCL-G[™] based coal-to-liquid plant (syngas product H₂/CO >2.0) with Fischer-Tropsch / refinery for making diesel fuel

DOE Baseline Cases:

- GE IGCC with CO₂ capture (Case 2 Vol 1)
- Shell CTL plant for making diesel fuel (Case 4 Vol 4)

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 5 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

IGCC Base Case (IGCC w CO₂ Capture) DOE Baseline Report Case 2 – Volume 1

© ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial oricrumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Limestone Chemical Looping Preliminary Economics for Power Generation

IGCC Base PC Base LCL-C™ H2 for Power Time Frame Today Today After DOE 9498 After DOE 9498 After ODE 9498 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>\frown</th><th></th></td<>						$ \frown $	
IGCC Base PC Base LCL-C™ /H2 for Power Time Frame Today Today After DOE 9498 After DOE 9498 After DOE 9498 After 2020 Gasifier/Combustor GE IGCC SCC LCL-C™ LCL-G™ LCL-G™ LCL-G™ DOE DOE DOE DOE DOE Alstom Alstom CO2 Capture Method WGS/Selexol None LCL-C™ WGS/Selexol Power Purpose Steam Cycle Subcritical SC SC Sub Critical SC Combustion Turbine 7 FA - - 7FA 7HA Total SC Carbon Capture (% of Coal) 90 0 97 90 98 98 Performance Fuel Fired (Ib/Ir) 487,011 409,528 449,595 450,000 450,000 Fuel Fired, HHV (MMBtu/hr) 5,681 4,778 5,245 5,250 5,250 Reducer,Gasifier,Boiler Stoichiometry 39 120 43					POWER CA	SES	
Time Frame Today Today After DOE 9498 After DOE 23497 After 2020 Gasifier/Combustor GE IGCC SCPC LCL-C™ LCL-G™ None LCL-G™ MGS/Selexol LCL-G™ Power Power Power Power Power Power Selexol Selexol Selexol Selexol Selexol Selexol Selexol Selexol Selexol			IGCC Base	PC Base	LCL-C™	H2 for Pov	wer
Gasifier/Combustor GE IGCC SCPC LCL-CTM LCL-GTM Alstorn Alstorn CO2 Capture Method WGS/Selexol None LCL-CTM Alstorn Alstorn </th <th></th> <th>Time Frame</th> <th>Today</th> <th>Today</th> <th>After DOE 9498</th> <th>After DOE 23497</th> <th>After 2020</th>		Time Frame	Today	Today	After DOE 9498	After DOE 23497	After 2020
DOE DOE Alstom Alstom Alstom CO2 Capture Method WGS/Selexol None LCL-C TM WGS/Selexol LCL-G TM Purpose Power Stab Critical SC SC SUb Critical SC SC Sub Critical SC SC SUb Critical SC SC SUb Critical SC SC Combustion Turbine 7 FA - - 7 FA 7 HA 7 Carbon Capture (% of Coal) 90 0 97 90 98 450,000 450,000 Fuel Fired, HHV (MMBtu/hr) 5,681 4,778 5,245 5,250 5,250 5,250 Reducer,Gasifier,Boiler Stoichiometry 39 120 120 43 58 SynGas Energy, HHV (% of Input) 15 - <th></th> <th>Gasifier/Combustor</th> <th>GE IGCC</th> <th>SCPC</th> <th>LCL-C™</th> <th>LCL-G™</th> <th>LCL-G™</th>		Gasifier/Combustor	GE IGCC	SCPC	LCL-C™	LCL-G™	LCL-G™
CO2 Capture Method WGS/Selexol None LCL-C™ WGS/Selexol Power Purpose Power Power <t< th=""><th></th><th></th><th>DOE</th><th>DOE</th><th>Alstom</th><th>Alstom</th><th>Alstom</th></t<>			DOE	DOE	Alstom	Alstom	Alstom
Purpose Power Subcritical SC Steam Cycle Subcritical SC SC Sub Critical SC Sub Critical SC Combustion Turbine 7 FA - - 7FA 7HA Reducer/Boiler/Gasifier Press (ata) 55 1 1 1 7 Carbon Capture (% of Coal) 90 97 90 98 Performance Fuel Fired (lb/hr) 487,011 409,528 449,595 450,000 450,000 Fuel Fired, HHV (MMBtu/hr) 5,681 4,778 5,245 5,250 5,250 Reducer,Gasifier,Boiler Stoichiometry 39 120 120 43 58 SynGas Energy, HHV (% of Input) 68 - - 20 45 Gross Power " 734,000 580,400 649,700 765,298 8		CO2 Capture Method	WGS/Selexol	None	LCL-C™	WGS/Selexol	LCL-G™
Steam Cycle Subcritical SC SC Sub Critical SC Combustion Turbine 7 FA - - 7FA 7HA Reducer/Boiler/Gasifier Press (ata) 55 1 1 1 7 Carbon Capture (% of Coal) 90 0 97 90 98 Performance Fuel Fired (lb/hr) 487,011 409,528 449,595 450,000 450,000 Fuel Fired, HHV (MMBtu/hr) 5,681 4,778 5,245 5,250 5,250 Reducer, Gasifier, Boiler Stoichiometry 39 120 120 43 58 SynGas Energy, HHV (% of Input) 15 - - 20 45 Gross Power " 734,000 580,400 649,700 765,298 825,040 Net Plant eff., HHV (%) 32.6 39.3 35.8 42.3 46.4 Total Plant Cost Capacity Factor 80 85 85 80 85		Purpose	Power	Power	Power	Power	Power
Combustion Turbine 7 FA - - 7FA 7HA Reducer/Boiler/Gasifier Press (ata) 55 1 1 1 7 Carbon Capture (% of Coal) 90 0 97 90 98 Performance Fuel Fired (lb/hr) 487,011 409,528 449,595 450,000 450,000 Fuel Fired, HHV (MMBtu/hr) 5,681 4,778 5,245 5,250 5,250 Reducer,Gasifier,Boiler Stoichiometry 39 120 120 43 58 SynGas Energy, HHV (% of Input) 68 - - 20 45 Gross Power " 734,000 580,400 649,700 765,298 825,040 Net Power " 543,250 549,990 550,003 650,420 713,553 Net Plant eff., HHV (%) 32.6 39.3 35.8 42.3 46.4 Total Plant Cost Coapacity Factor 80 85 85 80 85		Steam Cycle	Subcritical	SC	SC	Sub Critical	SC
Reducer/Boiler/Gasifier Press (ata) 55 1 1 1 1 7 Carbon Capture (% of Coal) 90 0 97 90 98 Performance Fuel Fired (lb/hr) 487,011 409,528 449,595 450,000 450,000 Fuel Fired, HHV (MMBtu/hr) 5,681 4,778 5,245 5,250 5,250 Reducer, Gasifier, Boiler Stoichiometry 39 120 120 43 58 SynGas Energy, HHV (% of Input) 68 - - 75 50 Power Steam Energy, HHV (% of Input) 15 - - 20 45 Gross Power " 734,000 580,400 649,700 765,298 825,040 Net Plant eff., HHV (%) 32.6 39.3 35.8 42.3 46.4 Total Plant Cost 1,783,649 1,097,067 1,246,480 1,283,798 1,277,370 Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.6		Combustion Turbine	7 FA	-	-	7FA	7HA
Carbon Capture (% of Coal) 90 0 97 90 98 Performance Fuel Fired (lb/hr) 487,011 409,528 449,595 450,000 450,000 Fuel Fired, HHV (MMBtu/hr) 5,681 4,778 5,245 5,250 5,250 Reducer, Gasifier, Boiler Stoichiometry 39 120 120 43 58 SynGas Energy, HHV (% of Input) 68 - - 75 50 Power Steam Energy, HHV (% of Input) 15 - - 20 45 Gross Power " 734,000 580,400 649,700 765,298 825,040 Net Power " 543,250 549,990 550,003 650,420 713,553 Net Plant eff., HHV (%) 32.6 39.3 35.8 42.3 46.4 Capacity Factor 80 85 85 80 85 Capacity Factor 80 85 85 80 0.51 <td< th=""><th>Reducer/Boil</th><th>er/Gasifier Press (ata)</th><th>55</th><th>1</th><th>1</th><th>1</th><th>7</th></td<>	Reducer/Boil	er/Gasifier Press (ata)	55	1	1	1	7
Performance Fuel Fired (lb/hr) 487,011 409,528 449,595 450,000 450,000 Fuel Fired, HHV (MMBtu/hr) 5,681 4,778 5,245 5,250 5,250 Reducer,Gasifier,Boiler Stoichiometry 39 120 120 43 58 SynGas Energy, HHV (% of Input) 68 - - 75 50 Power Steam Energy, HHV (% of Input) 15 - - 20 45 Gross Power " 734,000 580,400 649,700 765,298 825,040 Net Power " 543,250 549,990 550,003 650,420 713,553 Net Plant eff., HHV (%) 32.6 39.3 35.8 42.3 46.4 Capacity Factor 80 85 85 80 85 Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.60 0.51 1.76 1.00 1.15 1.05 0.90 0.55 0.63<	Carbon C	apture (% of Coal)	90	0	97	90	98
Fuel Fired, HHV (MMBtu/hr) 5,681 4,778 5,245 5,250 5,250 Reducer,Gasifier,Boiler Stoichiometry 39 120 120 43 58 SynGas Energy, HHV (% of Input) 68 - - 75 50 Power Steam Energy, HHV (% of Input) 15 - - 20 45 Gross Power " 734,000 580,400 649,700 765,298 825,040 Net Power " 543,250 549,990 550,003 650,420 713,553 Net Plant eff., HHV (%) 32.6 39.3 35.8 42.3 46.4 Total Plant Cost 1,783,649 1,097,067 1,246,480 1,283,798 1,277,370 Capacity Factor 80 85 85 80 85 Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.60 0.51 1.76 1.00 1.15 1.05 0.90 0.55 0.63 0.55	Performance Fuel Fir	ed (lb/hr)	487,011	409,528	449,595	450,000	450,000
Reducer,Gasifier,Boiler Stoichiometry 39 120 120 43 58 SynGas Energy, HHV (% of Input) 68 - - 75 50 Power Steam Energy, HHV (% of Input) 15 - - 20 45 Gross Power " 734,000 580,400 649,700 765,298 825,040 Net Power " 543,250 549,990 550,003 650,420 713,553 Net Plant eff., HHV (%) 32.6 39.3 35.8 42.3 46.4 Total Plant Cost 1,783,649 1,097,067 1,246,480 1,283,798 1,277,370 Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.60 0.51 1.76 1.00 1.15 1.05 0.90 0.55 0.63 Relative Gasification Cost / Coal Flow 1.00 0.87 0.79 0.61 0.55 0.63 1.15 1.00 0.91 0.70 0.63	Fuel Fired, H	IV (MMBtu/hr)	5,681	4,778	5,245	5,250	5,250
SynGas Energy, HHV (% of Input) 68 - - 75 50 Power Steam Energy, HHV (% of Input) 15 - - 20 45 Gross Power " 734,000 580,400 649,700 765,298 825,040 Net Power " 543,250 549,990 550,003 650,420 713,553 Net Plant eff., HHV (%) 32.6 39.3 35.8 42.3 46.4 Total Plant Cost 1,783,649 1,097,067 1,246,480 1,283,798 1,277,370 Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.60 0.51 1.76 1.00 1.15 1.05 0.90 0.55 Relative Gasification Cost / Coal Flow 1.00 0.87 0.79 0.61 0.55 1.15 1.00 0.91 0.70 0.63 0.75 0.68 0.75	Reducer, Gasifier, Boil	er Stoichiometry	39	120	120	43	58
Power Steam Energy, HHV (% of Input) 15 - - 20 45 Gross Power " 734,000 580,400 649,700 765,298 825,040 Net Power " 543,250 549,990 550,003 650,420 713,553 Net Plant eff., HHV (%) 32.6 39.3 35.8 42.3 46.4 Total Plant Cost 1,783,649 1,097,067 1,246,480 1,283,798 1,277,370 Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.60 0.51 Relative Gasification Cost / Coal Flow 1.00 0.87 0.79 0.61 0.55 Relative Cost of Elect w/ CO2 T&S 1.00 0.58 0.75 0.68 0.59	SynGas Energy, H	IV (% of Input)	68	-	-	75	50
Gross Power " 734,000 580,400 649,700 765,298 825,040 Net Power " 543,250 549,990 550,003 650,420 713,553 Net Plant eff., HHV (%) 32.6 39.3 35.8 42.3 46.4 Total Plant Cost 1,783,649 1,097,067 1,246,480 1,283,798 1,277,370 Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.60 0.51 Relative Gasification Cost / Coal Flow 1.00 0.87 0.79 0.61 0.55 Relative Cost of Elect w/ CO2 T&S 1.00 0.58 0.75 0.68 0.75	Power Steam Energy, H	IV (% of Input)	15	-	-	20	45
Net Power " 543,250 549,990 550,003 650,420 713,553 Net Plant eff., HHV (%) 32.6 39.3 35.8 42.3 46.4 Total Plant Cost 1,783,649 1,097,067 1,246,480 1,283,798 1,277,370 Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.60 0.51 Relative Gasification Cost / Coal Flow 1.00 0.877 0.79 0.61 0.55 Relative Cost of Elect w/ CO2 T&S 1.00 0.58 0.75 0.68 0.75	Gross Power	"	734,000	580,400	649,700	765,298	825,040
Net Plant eff., HHV (%) 32.6 39.3 35.8 42.3 46.4 Total Plant Cost 1,783,649 1,097,067 1,246,480 1,283,798 1,277,370 Capacity Factor 80 85 85 80 85 Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.60 0.51 1.76 1.00 1.15 1.05 0.90 Relative Gasification Cost / Coal Flow 1.00 0.87 0.79 0.61 0.55 1.15 1.00 0.91 0.70 0.63 0.59 0.63	Net Power	u	543,250	549,990	550,003	650,420	713,553
Total Plant Cost 1,783,649 1,097,067 1,246,480 1,283,798 1,277,370 Capacity Factor 80 85 85 80 85 Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.60 0.51 1.76 1.00 0.87 0.79 0.61 0.55 Relative Gasification Cost / Coal Flow 1.00 0.87 0.79 0.61 0.55 1.15 1.00 0.91 0.70 0.63 0.59	Net Plant eff., HH	V (%)	32.6	39.3	35.8	42.3	46.4
Capacity Factor 80 85 85 80 85 Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.60 0.51 Image: Capacity Factor 1.76 1.00 1.15 1.05 0.90 Relative Gasification Cost / Coal Flow 1.00 0.87 0.79 0.61 0.55 Image: Cost of Elect w/ CO2 T&S 1.00 0.58 0.75 0.68 0.59	Total Plant Co	st	1,783,649	1,097,067	1,246,480	1,283,798	1,277,370
Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.60 0.51 1.76 1.00 1.15 1.05 0.90 Relative Gasification Cost / Coal Flow 1.00 0.87 0.79 0.61 0.55 1.15 1.00 0.91 0.70 0.63		Capacity Factor	80	85	85	80	85
Relative Capital Cost / Coal Flow 1.00 0.57 0.65 0.60 0.51 1.76 1.00 1.15 1.05 0.90 Relative Gasification Cost / Coal Flow 1.00 0.87 0.79 0.61 0.55 1.15 1.00 0.91 0.70 0.63							
1.76 1.00 1.15 1.05 0.90 Relative Gasification Cost / Coal Flow 1.00 0.87 0.79 0.61 0.55 1.15 1.00 0.91 0.70 0.63 Relative Cost of Elect w/ CO2 T&S 1.00 0.58 0.75 0.68 0.59	Relative Ca	pital Cost / Coal Flow	1.00	0.57	0.65	0.60	0.51
Relative Gasification Cost / Coal Flow 1.00 0.87 0.79 0.61 0.55 1.15 1.00 0.91 0.70 0.63			1.76	1.00	1.15	1.05	0.90
1.15 1.00 0.91 0.70 0.63 Relative Cost of Elect w/ CO2 T&S 1.00 0.58 0.75 0.68 0.59	Relative Gasific	tion Cost / Coal Flow	1.00	0.87	0.79	0.61	0.55
			1.15	1.00	0.91	0.70	0.63
	Relative Cost of	Elect w/ CO2 T&S	1.00	0.58	0.75	0.68	0.59
1.71 1.00 1.29 1.17 1.00			1.71	1.00	1.29	1.17	1.00

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 7 @ ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without noice. Reproduction, use or disclosure to thind parties, without express written authority, is strictly prohibited.

Limestone Chemical Looping Preliminary Economics for Coal-to-Liquids

	1											
		DIESEL CASES										
		Petro Diesel	DOE-base	SynC	Bas for CTL D	iesel)						
	Time Frame		Today	After DOE 23497	Ater DOE 23497	After 2020						
	Gasifier/Combustor		Shell Gasifier	LCL-G™	LCL-G™	LCL-G™						
		DOE	DOE	Alstom	Alstom	Alstom						
	CO2 Capture Method	-	WGS/Selexol	WGS/Selexol	WGS/Selexol	LCL-G™						
	Purpose	Petroleum	SynGas	SynGas	SynGas	SynGas						
	Steam Cycle	-	Sub Critical	Sub Critical	Sub Critical	SC						
	Combustion Turbine	-	7FA	7FA	7FA	7HA						
Reducer/Boile	/Gasifier Press (ata)	-	1	1	1	7						
Carbon Ca	oture (% of Coal)	0	90	60	90	90						
Carbon Capture	(% of Total Carbon)	-	60	60	60	60						
H2/CO to Fisc	her-Tropsch (molar)	-	2	2	2	3						
Biom	nass (% of Fuel HHV)	-	30	0	30	30						
Performance Fuel Fired	l (lb/hr)	59928 (bpd)	487,011	450,000	450,000	450,000						
Fuel Fired, HHV	(MMBtu/hr)	13,379	5,681	5,250	5,250	5,250						
Reducer, Gasifier, Boiler Air/Coa	(molar)	-	39	43	43	40						
SynGas Energy, HHV	(% of Input)	-	68	75	75	70						
Power Steam Energy, HHV	(% of Input)	-	15	20	20	25						
Gross Power	"	34,000	180,363	105,174	105,174	185,438						
Net Power	"	-	-	-	-	124,271						
Net Plant eff., HHV	(%)	85.5	51.6	57.3	57.3	53.5						
CBTL Production	I (MMBtu/hr)		2,932	3,008	3,008	2,810						
CBTL Production	(bbl/day)	53,753	14,211	14,584	14,584	13,624						
Total Plant Cos		1,917,000	1,576,566	1,016,880	1,016,880	928,688						
	Capacity Factor	90	80	80	80	85						
Die	sel production (gal/yr)	706,314,420	165,989,604	170,344,435	170,344,435	169,073,648						
Diese	l production (Bbl/day)	46,074	10,828	11,112	11,112	11,029						
			1.00									
Relative Cap	tal Cost / Coal Flow	-	1.00	0.63	0.63	0.58						
		-	1.00	0.04	0.01	0.50						
Relative Gasificat	on Cost / Coal Flow	-	1.00	0.64	0.64	0.59						
Rolativ	e Cost of Diesel	0.58	1.00	0.56	0.73	<u> </u>						
Kelativ		1.00	4 74	0.07	1.00	4.45						
L		1.00	1./4	0.97	1.20	1.15						

Limestone Chemical Looping Technology **Commercialization Plan**

Limestone Chemical Looping Scale-up to 3-MW_{th}

Alstom 3 MW_{th} LCL Prototype – Major Milestones Completed (LCL-Combustion):

- Engineering (Oct 2008 Apr 2010)
- EPC and Shakedown (Apr 2010 Dec 2010)
- First auto thermal operation achieved in July 2012; **May 2013**
- Identification of 7 Main Technical Gaps
- Oct 2013 Autothermal operation and testing to address gaps
- June 2015 Relocated to New Alstom Lab in Bloomfield, CT
- July 2015 Prototype re-commissioned and resumed testing (Test 2 completed)

Largest chemical looping facility in the world

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 10 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without tability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express mitten authority, is strictly prohibited.

Prototype (3 MWt)

Alstom Test Facility Relocation

Windsor Test Facilities Fully Operational

Move to Tobey Road - Bloomfield, CT R&D Test Facilities - Feb 2014

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 11 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibiled.

Chemical Looping Facility –Construction/Relocation Now Ready to Continue Testing

Cut Opening -April 2014

Tower Steel - June 2014

Tower Complete - March 2015

Outside Equipment Complete March 2015

Aerial View of Alstom R&D Test Facilities May 2015

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 12 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Limestone Chemical Looping (LCL[™]) Development Advanced Oxy Combustion – Project Objectives and Status

DOE/NETL Cooperative Agreement No. DE-FE0009484 Phase 1 and 2 - October 2012 to Sept. 2016

- Techno-economic studies on 4 LCL-C[™] cases
 Completed June 2013
- Address 7 main technology gaps
 - <u>Seven 3 MW_{th} prototype tests</u> incorporating system modifications Test 1 Completed Oct 2013 Test 2 Completed July 2015
 - Various supporting bench, small pilot, physical flow and CFD modeling studies On-going

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 13 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Limestone Chemical Looping (LCL[™]) Development Advanced Gasification – Project Objectives and Scope

DOE/NETL Cooperative Agreement No. DE-FE0023497 – October 2014 to March 2017

Objective:

To further develop LCL-GTM technology for generation of high-H₂ syngas from coal for liquid fuel production and/or power generation with CO_2 capture.

Scope:

- Small-scale developmental testing (including 100mm diameter 50ft LCL-G pilot tests)
- Cold flow model testing
- Computational modeling simulations
- 3.0 MWth prototype testing
- Techno-economic assessments

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 14 @ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to Initig parties, without express writhout express writhout express.

Technology Development Areas

	LCL-G [™] Technology Development											
	Development Item/Gap	Success Criteria	Testing									
1	solids/gas transport	stable & controllable	CFM, PSTF, Prototype (w/ Contract 9484)									
2	carbon conversion	> 90% of carbon in coal	Bench, PSTF, Prototype (w/ Contract 9484)									
3	sulfur capture/retention	90% of sulfur retained	Bench, PSTF, Prototype (w/ Contract 9484)									
4	sorbent activation	Minimal/acceptable degradation	Bench, PSTF, Prototype (w/ Contract 9484)									
5	simultaneous WG shift & carbon capture	>90% within 1 second	Bench testing, TEA									
6	calcination	calcine < 1 second	Bench testing, TEA									
7	product gas stability during load change	10% per minute	PSTF, Prototype testing									
8	- Biomass co-firing	10 to 50%, HHV	Bench, PSTF									
9	Integration w/ F-T Liquefaction	acceptable TEA/TGA	Future Development									

Limestone Chemical Looping (LCL[™]) Development DOE Award 9484– Prototype Testing - Addressing Gaps

Modifications & Planned Work

Prototype (3 MWt)

ID	TECHNICAL GAP	AFFECTS
1	High Solids Loss Rate	operability
2	Main DipLeg Flushing	operability
3	Solids stability	operability
4	Sorbent Activation	operability
5	Sulfur Capture / Loss	operability
6	Low temperatures during some tests	operability
7	Carbon Carryover to Oxidizer	performance

(Additional Gap: Reducer Gas Oxygen Demand – To Be Addressed in Future)

Define Gap / check solution:

Prototype Performance Shortfall Analyze Prototype Data Define Bench Test

find solution:

40-Ft CFM for Solids Transport

50-Ft & Bench Test Rig(s) for Chemistry, Conversions, Transport

Three Main Areas To Further Address: Solids Management, Carbon Capture and Sulfur Retention

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 - P 16 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is stircity prohibiled.

Award 9494 - LCL-C[™] Prototype Testing Solids Transport Management

Key Issues:

DipLeg Inventory Control - Affects:

- Solids loss thru cyclone
- Carbon conversion

DipLeg Gas Generation - Affects:

- DipLeg solids inventory control
- Solids recycle rate control and stability.
 - Sulfur retention via solid/gas stoichiometry
 - Recycle rate controls Reducer temperature

Solids Management Critical to Operability and Performance

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 17 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular product. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without noice. Reproduction, use or disclosure to third parties, without express writher authority, is strictly prohibited.

Limestone Chemical Looping Test 2 Modifications – Gas Drain System

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 18 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular production. Will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without noice. Reproduction, use or disclosure to Initig parties, without express writhout expression provided without. Phase II Deliverables.xIs 1 Nov 2013

Award 23497 Gasification 3 MWth Prototype Testing

Prototype LCL-G[™] test program to maximize syngas H_2 , minimize CH_4 and minimize N_2

- Three (3) piggyback LCL-G test campaigns combined with Project 9484 LCL-C test campaigns;
 Final dedicated test after LCL-G modifications
- Assess effects and optimize key parameters such as reduce and oxidizer stoichiometry and temperatures, reducer steam flow
- Reducer carbon conversion, volatile cracking and gasification
- Oxidizer CaS oxidization behavior, Oxidizer/ Reducer ۲ sulfur capture and release mechanisms
- Solids transport behavior
- Behavior of different fuel types, fuel and limestone size
- Evaluate carrier behavior and performance, different • limestone types, carrier mixtures and additives

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 - P 19 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Small-Scale Testing and Process Development 100mm Pilot-Scale Test Facility (PSTF)

Map conditions to better understand behavior – single and double loop tests, vary reactor sizes

- Assess effects and optimize key parameters such as reducer and oxidizer stoichiometry and temperatures, reducer steam flow
- Reducer carbon conversion and residence time requirements
- Coal volatile cracking and conversion
- Oxidizer CaS oxidization behavior
- Oxidizer/Reducer sulfur capture and release mechanisms
- Solids flow and circulation behavior
- Behavior of different fuel types
- Evaluate carrier behavior and performance, different limestone types, carrier mixtures and additives

100 mm Dia. 50ft. Riser (Oxidizer or Reducer)

Under Construction – To Be Completed September 2015

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 20 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to thing particular project.

100 mm Pilot Scale Test Facility – Under Construction

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 21 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Oxidizer

. .

Reducer

Electric and I&C Supply

Limestone Chemical Looping Development Planned Workscope & Schedule

Calender Year					201	۱5								·	20	16										201	017											
	Α	N	1 J	J	Α	S	0	Ν	D	J	F	Μ	Α	М	J	J	Α	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S								
Alstom Lab Relocation																																						
LCL-Combustion (Award 9484)																																						
Techno-economic Update																			Ì																			
Support Testing (PSTF -						4		4	1		▲		1																									
3 MW Prototype Mods & Testing					4							۸			44			[
LCL-Gasification (Award 23497)																																						
Techno-economic Assessment																																						
Support Testing (PSTF -								Δ		4				4					Δ]															
3 MW Prototype Mods & Testing									4				Δ		1	4		<u> </u>			1																	
Reducer O2 Demand (Planned)		-																																				
Support Testing (PSTF -		-																		Δ				Á			Δ											
3MW Prototype Testing																													Δ									
Demo Pre-FEED & FEED (Planned)																																						

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 22 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Alstom Limestone Chemical Looping Summary

- Techno-economic studies continue to indicate that Limestone Chemical Looping technology has the potential for lowest cost coal-based power generation with CO₂ capture.
- Alstom been developing chemical looping technologies for more than a decade:

Significant knowledge and understanding has been developed through comprehensive testing, modeling and engineering studies.

- Autothermal operation has been achieved at the 3 $\rm MW_{th}$ scale confirming chemical looping reactions and performance potential.
- Development gaps have been identified and comprehensive programs are in-progress to address them.
- Alstom is continuing development efforts and on track
 with its commercialization roadmap

Acknowledgements and Disclaimer

Acknowledgement

Some of work presented was supported by the U S Department of Energy through the National Energy Technology Laboratories under Agreements DE FE-0009484 and DE FE -0023497. The guidance and direction of NETL Project Manager Briggs White is acknowledged and appreciated.

Disclaimer

Parts of this presentation were prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Information disclosed herein is furnished to the recipient solely for the use thereof as has been agreed upon with ALSTOM and all rights to such information are reserved by ALSTOM. The recipient of the information disclosed herein agrees, as a condition of its receipt of such information, that ALSTOM shall have no liability for any direct or indirect damages including special, punitive, incidental, or consequential damages caused by, or arising from, the recipient's use or non-use of the information

Techno-Economic Study: LCL-Combustion

Study Cases: 550 MW_e Power Plant with CO₂ Capture

(Applying DOE Economic Methodologies and Guidelines)

- Case 1 LCL-C[™] system using transport reactors
- Case 2 LCL-C[™] system with the Reducer reactor in the CFB mode
- Case 3 LCL-C[™] system of Case 1 with an advanced ultra-supercritical (AUSC, 350bar/730°C/760°C) steam cycle
- Case 4 LCL-C[™] system with pressurized Reducer reactor with an AUSC steam cycle

Comparison Basis:

- State-of-the-art SCPC case Case 11 from Cost and Performance Baseline for Fossil Energy Plants Volume 1, DOE/NETL-2010/1397
- 1st generation Oxy-combustion PC case Case 5 from Pulverized Coal Oxy-combustion Power Plants, DOE/NETL-2007/1291 (COE increased 53.5% from Case 11)

LCL-C[™] Power Island Process

Fully integrated with AQCS and CO₂ capture system

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 27 ©ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Chemical Looping Development Phase 1 - LCL-C[™] Techno-economic Analysis

	Baseline: US DOE SCPC plant, no capture	US DOE Oxy-SCPC plant	Alstom SC Chem Loop Plant, Case 1
Nominal output (net, MW)	550	550	550
Capacity factor (%)	85	85	85
HHV efficiency (% HHV)	39.3	29.3	35.8
CO ₂ capture (%)	0	93	97
CO ₂ emitted rate (lb/MWh)	1210	113	40
EPC overnight cost (\$/kW)	2452	3977	DOE gool 2795
Cost of Electricity Breakdown			
Fuel (\$/MWh)	25.53	34.25	>90% 28.04
Capital (\$/MWh)	38.19	66.23	46.55
O&M fixed (\$/MWh)	9.48	14.24	10.58
O&M variable (\$/MWh)	7.74	9.54	11.53
T&S adder to COE (\$/MWh)	0	8.29	DOE goal: 7.08
1 st yr COE (w/o T&S, \$/MWh)	80.95	124.25	<35% 96.7
LCOE (w/o T&S, \$/MWh)	102.64	157.55	122.62
Fuel cost (\$/MMBtu)	2.94	2.94	2.94
Construction period (yrs)	**************************************	5	10000000000000000000000000000000000000
Operational period (yrs)	30	30	30
% Increase – Levelized COE		53.5	19.5

DOE Gasification Systems and Coal & Biomass to Liquids - Levasseur 10 August 2015 – P 28 © ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Support Testing - Physical Flow Model and **CFD Modeling**

40ft Cold Flow Model

- ~ 1 million computational particles
- 78,000 cells (discounting null cells) 40 sec real time/day

40th Clearwater Conference - Levasseur 3 June 2015 © ALSTOM 2014. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without expresses written authority, is strictly prohibited.

