Design/Cost Study and Commercialization Analysis for Synthetic Jet Fuel Production at a Mississippi site from Lignite and Woody Biomass with CO₂ Capture and Storage via EOR

DOE/NETL Project #: DE-FE0023697 (under NETL Major Projects Division)

Eric Larson, PhD

(elarson@princeton.edu)

Project PI and Senior Research Engineer

Energy Systems Analysis Group

Andlinger Center for Energy and the Environment

Princeton University, Princeton, NJ

2015 Gasification Systems and Coal & Coal-Biomass to Liquids Workshop

Lakeview Conference Center, Morgantown, WV 10-11 August 2015

Project Motivation

• CBTL w/CCUS increases transportation energy security.

• Can achieve zero or negative GHG emissions (with less biomass than pure biofuel).^{1,2}

• Economics improve with increasing GHG emission price.^{1,2}

• Coproducing electricity with fuel (CBTLE-CCUS) can provide transportation fuel security and may provide an opportunity for coal to remain competitive in supplying the anticipated need for major new baseload capacity in a carbon-constrained world.³

^{1.} Liu, Larson, Williams, Guo, "Gasoline from Coal and/or Biomass with CO2 Capture and Storage, 1. Process Designs and Performance Analysis and 2. Economic Analysis and Strategic Context," *Energy and Fuels*, Feb. 2015.

^{2.} Liu, Larson, Williams, Kreutz, Guo, "Making Fischer–Tropsch Fuels and Electricity from Coal and Biomass: Performance and Cost Analysis," *Energy & Fuels*, January 2011.

^{3.} Williams, "Coal/Biomass Coprocessing Strategy to Enable a Thriving Coal Industry in a Carbon-Constrained World," *Cornerstone Magazine*, 1(1): 51-59, 2013.

Need for New Baseload Capacity

Baseload coal power generation as projected by the EIA (line), and when accounting for coal-plant capacity factors declining with age (bars). Equivalent of 144 GW of new baseload capacity projected to be needed by 2040.*

Missing generation estimate 144 GW @80% average C.F. for new units to meet 2040 demand

^{*} Source: K. Kern, "Coal Baseload Asset Aging: Evaluating Impacts on Capacity Factors," presented at Workshop on Coal Fleet Aging and Performance, EIA Post-Conference Meeting, Renaissance Hotel, Washington D.C., 16 June 2015.

Project Objectives

- Design a first-of-a-kind (FOAK) plant co-gasifying lignite and woody biomass, with syngas conversion to F-T synthetic jet fuel suitable for 50/50 blending with petroleum jet fuel. Capture co-product CO₂ for EOR. Sell co-product naphtha and electricity.
 - (Future) construction and operation of the plant should demonstrate technical feasibility of the concept and provide data to improve performance and reduce costs for future commercial-scale plants.
- The FOAK plant should produce jet fuel with lifecycle GHG emissions lower than for petroleum jet fuel. (Stepping stone to zero-emission CBTLE plants.)
- Prepare design documentation to support a detailed capital cost estimate for the FOAK plant.
- Assess economics of FOAK plant and examine cost-reduction potential for mature-technology plants.
- Project duration: October 2014 September 2016.

Project Team

- Energy Systems Analysis Group, Princeton University
 - Eric Larson, Tom Kreutz, Hans Meerman, Robert Williams
- University of Queensland Energy Initiative, Australia (cost-share contributor)
 - Chris Greig (formerly CEO of Australia's ZeroGen Project)
- Southern Company Services (cost-share contributor)
 - Providing inputs relating to gasifier technology and Mississippi project site
- Consultants
 - Emanuele Martelli (Politecnico di Milano) on process heat integration, Antares Group (biomass supply and biogenic carbon emissions accounting)
- Technology providers:
 - KBR (TRIG gasifier), Emerging Fuels Technology (FT island), Siemens (GT), others
- Engineering services: WorleyParsons
 - Harvey Goldstein, Lora Pinkerton, Erich Mace, Qinhua Xie

Plant Concept Lignite + Biomass to Jet Fuel ("LBJ")

LBJ site: Mississippi Power Plant Sweatt (30 mi south of Kemper Co. IGCC-CCS)

Mississippi Lignite & Biomass-To-Jet Fuel Facility with CO2 Capture Study Mississippi Power Company - Plant Sweatt Lauderdale County, Mississippi

Plant Sweatt Lauderdale County, Mississippi Wetland Mitigation & Potential Wetland Areas

0 0.075 0.15

Plentiful supplies of woody biomass within a 100 mile radius of Meridian, MS

Total encircled area is about 25 million acres, 19 million of which are forested. More than 90% of the forested land is privately owned, and much of it is pine plantations.

Key Guiding Principles for Plant Design

Plant scale:

- Capital investment **no more than about \$2 billion**.
- Liquid fuel production capacity > 1,000 bbl/day.
- Non-negligible biomass fraction co-fed with lignite.

Plant life:

• 20 year design life; operate long enough (5 to 10 years) to demonstrate technical viability and provide data for future plants; operate beyond 5-10 years as long as economics allow.

Primary Products:

- Synthetic jet fuel satisfying EISA Section 526 (fuel-cycle GHG emissions less than for petroleum-derived jet) and designed for 50/50 splash-blending with petroleum jet fuel to meet ASTM Standard D1655-14 for commercial aviation.
- Non-negligible electricity export fraction using off-gas fired GTCC power island.

Design decisions:

- Maximize likelihood of technical success (not necessarily lowest cost).
- Minimize novel or not-yet-commercial equipment; off-the-shelf packages preferred over custom equipment; shop-fabricated modules preferred over field fabricated.

LBJ Technologies

Liquids off-take: Jet fuel into Plantation Pipeline via Meridian pumping station. Naphtha to local refinery: , e.g., Hunt (Tuscaloosa, AL, 75k bbl/d) or Chevron (Pascagoula, MS, 330k bbl/d).

CO₂ off-take: Deliver to Kemper IGCC pipeline to Jackson Dome or sell at plant gate (e.g., to Denbury)

Wilsonville Power Systems Development Facility tests

- PSDF TRIG success with up to 30 wt% woody biomass co-feed with PRB coal in both air and in O₂.
- No significant preparation or feeding issues.

- Negligible effect on carbon conversion or syngas heating value with biomass co-feed.
- No evidence of agglomeration or deposition in gasifier solids.
- No indication of excessive tar generation.
- Particulate filtration device (PCD) performance remained stable consistent pressure drop and low particulate loading in outlet syngas (<0.1 ppm)

FT Island Design (Emerging Fuels Technology)

- Tubular, fixed-bed, low-temperature Co catalyst FT reactor, with ~90% CO conversion. No external recycle.
- Simple refining to make SPK, refinery-grade naphtha, and off-gas.
- FT reactor modules are standardized at nominal 500 barrel/day to reduce manufacturing and erection costs.

Power Island Design

Off-gas fired GTCC + process waste heat recovery steam cycle (HRSC).

Early LBJ Plant Estimates PRELIMINARY – DO NOT QUOTE!

Total feedstock input, MW HHV	311
Biomass % of feedstock HHV input	25%
Lignite input, t/d A.R. (45.5% mc)	1,683
Biomass input, t/d (dry)	333
Biomass input, kt/year (dry) (90% CF)	109,252
Jet fuel, MW LHV	82
Naphtha, MW LHV	12
Jet fuel, barrels/day	1,388
Naphtha, barrels/day	228
Total liquids production, barrels/day	1,616
GTCC (SGT-700) gross output, MWe	44
Process heat steam cycle, gross MWe	30
On-site electricity use, MWe	25
Net electricity output, MWe	49
Electricity, % of energy outputs, LHV	34%
First law efficiency (LHV)	49%
CO ₂ captured, metric tCO ₂ /hr	69
CO ₂ stored, million t/y (100% CF)	0.6

<u>Feedstocks</u>			
Red Hills Mississippi Lignite (Kemper Public Design Report)			
Weight %	Dry	AF	AR
Carbon	57.84	45.13	31.53
Hydrogen	3.63	2.83	1.98
Nitrogen	0.88	0.69	0.48
Chlorine	0.02	0.02	0.01
Sulfur	1.82	1.42	0.99
Oxygen	13.89	10.83	7.57
Ash	21.92	17.10	11.95
Moisture		22.00	45.50
Sum	100.0	100.0	100.0
HHV, MJ/kg	22.58	17.61	12.30
LHV, MJ/kg	21.79	16.46	10.76
Southern Pine (NETL, 2014)			
Weight %	Dry	AF	AR
Carbon	53.89	45.81	30.56
Hydrogen	5.33	4.53	3.02
Nitrogen	0.41	0.34	0.23
Chlorine	0.00	0.00	0.00
Sulfur	0.04	0.03	0.02
Oxygen	39.25	33.36	22.25
Ash	1.09	0.93	0.62
Moisture		15.00	43.30
Sum	100.0	100.0	100.0
HHV, MJ/kg	20.19	17.17	11.45
LHV, MJ/kg	19.03	15.81	9.73

Project Timeline

- Process design done: Q4, 2015.
- Detailed capital cost estimate and associated documentation done: Q2, 2016.
- Final design report, including financial analysis and commercialization analysis, done: Q3, 2016.