

2015 Gasification Systems and Coal & Coal-Biomass to Liquids (C&CBTL) Workshop

Intermediate Temperature Nano-Structured Ceramic Hollow Fiber Membranes for Oxygen Separation

DE-FE0024059

PI: Xingjian Xue Dept. of Mechanical Engineering and SOFC program University of South Carolina, Columbia, SC

> Program Manager: Dr. Arun Bose National Energy Technology Laboratory

- Technology aims :
 - Improve production rate of high-purity oxygen from air;
 - Improve stability and reliability;
 - Reduce cost.

Working principle of ceramic membrane for oxygen permeation

Feed (air) side $0.50_2 + 2e^- \rightarrow 0^2 -$

Membrane $\int O^{2} O^{2}$

Permeate (oxygen) side $0^{2-} \rightarrow 0.50_2 + 2e^{-}$

- At the feed (oxygen rich) side :
 - oxygen molecule combines with electrons from the permeate (oxygen lean) side, thereby being reduced to oxygen ion;
 - generated oxygen ion jumps into oxygen vacancy in dense membrane and migrates to the permeate side;
- At the permeate side (oxygen lean):
 - oxygen ion is oxidized to form O₂ and release electrons;
 - released electrons at the permeate side then transport back to the feed side, forming a closed-circuit loop within the membrane.

Technology in a gasification/CTL plant

UNIVERSITY OF

This figure is adopted from the Office of Fossil Energy, Energy.gov

Project goals:

- Intermediate temperature nanostructured ceramic hollow fiber membranes for oxygen separation
 - Obtain high performance and enhanced durability;

Vision for project goals for commercial viability:

- Reducing temperatures provides advantages:
 - Widen material selections for membrane stack and ancillary system;
 - Improve durability;
 - Reducing system and operating cost.
- Nanostructured ceramic hollow fiber designs:
 - Enhancing performance;
 - Improving specific oxygen flux.

- State-of-the-art
 - High operating temperatures (>750 °C);
 - Material development and membrane cell fabrication;
 - Single cell testing and characterization;
 - Planar design;
 - Tubular design;
- Remaining work at the end of the ongoing project:
 - Stack development

Conceptual design of stack with hollow fiber membranes

Commercial Benefits

- Commercial Benefits
 - Cost-effective technology for pure oxygen generation from air with highly specific volumetric oxygen flux.
- Justification
 - Pretty simple system: dense mixed conducting membranes;
 - Generating pure oxygen from air;
 - Significantly reducing capital investments;
 - Reducing membrane dimensions (with diameters at millimeter or sub-millimeter scales) may significantly improve specific volumetric oxygen generation flux.
 - Lowering temperatures also reduces operating cost and ancillary components cost.

- Surface exchange and bulk diffusion: two typical processes involved in gas separation ceramic membranes;
- Significance of obtaining surface exchange coefficient and bulk diffusivity;
 - Quantitative understanding surface exchange and transport mechanism in ceramic membranes;
 - Design membrane materials with better performance;
- Characterization
 - Electrical conductivity relaxation (ECR) measurement;
 - Inverse algorithm to extract electrochemical kinetic property.

XRD patterns of PrBa(Co_{1-x} Ψ_x)₂O_{5+ δ} and PrBa(Co_{1-x-y} $\Psi_x \Phi_y$)₂O_{5+ δ} oxides at room temperature in air.

Experimental results

UNIVERSITY OF

Layered perovskite $PrBa(Co_{0.7} \Psi_x)_2 O_{5+\delta}$

- oxygen partial pressure step change from 0.01 to 0.1 atm at different temperatures;
- Reduce temperature (to 500 °C), ECR property deteriorates

Layered PrBa($Co_{0.7} \Psi_{x-y} \Phi_{y}$)₂O_{5+ δ}

- oxygen partial pressure step change from 0.1 to 0.01 atm at different temperatures;
- Reducing temperature has little effect on ECR property, suitable for low temperature membranes;
- Lower temperature ECR measurement will be performed.

Layered $PrBa(Co_{0.7} \Psi_{x-y} \Phi_y)_2 O_{5+\delta}$ – synthesis conditions (temperatures)

- Synthesis powder materials are calcinated at different temperatures;
- oxygen partial pressure step change from 0.1 to 0.01 atm at different temperatures;

Performance repeatability of $PrBa(Co_{0.7} \Psi_{x-y})_2 O_{5+\delta}$ material:

- measured with oxidation step from oxygen partial pressures of 0.1 to 0.01 atm;
- Pretty good.

Given:
$$\bar{\sigma}(t)_{meas}$$
 Find: D and k
Minimize: $S(D,k) = \int_0^t [\bar{\sigma}(D,k,t)_{simu} - \bar{\sigma}(t)_{meas}]^2 dt$
Subject to: $\frac{\partial C_v}{\partial t} = \nabla \cdot (D\nabla C_v)$ $C_v(x,y,z,0) = C_0$ $-D\frac{\partial C_v}{\partial n}|_{surface} = k(C_v - C_\infty)$

[Journal of The Electrochemical Society, 162 (9) F951-F958 (2015)]

Dopants/levels			k _{chem} [cm s⁻¹]				D _{chem} [cm ² s ⁻¹]		
•	•	Со	500 °C	600 °C	700 °C		500 °C	600 °C	700 °C
0.05	0.25 0.275 0.30	0.70 0.675 0.65	2.55×10 ⁻² 1.27×10 ⁻² 1.52×10 ⁻⁴	1.17×10 ⁻² 3.13×10 ⁻³ 2.81×10 ⁻⁴	9.64×10 ⁻³ 4.77×10 ⁻⁴ 9.16×10 ⁻⁵		1.92×10 ⁻³ 1.55×10 ⁻³ 6.20×10 ⁻³	2.16×10 ⁻³ 3.13×10 ⁻³ 6.04×10 ⁻³	1.92×10 ⁻³ 3.08×10 ⁻³ 2.88×10 ⁻³
0.10	0.20 0.25 0.30	0.70 0.65 0.60	1.20×10 ⁻⁴ 3.20×10 ⁻⁷ 4.42×10 ⁻⁴	1.72×10 ⁻³ 2.26×10 ⁻⁴ 1.31×10 ⁻³	1.96×10 ⁻⁴ 6.30×10 ⁻⁴ 3.13×10 ⁻⁴		1.56×10 ⁻³ 2.48×10 ⁻⁵ 6.60×10 ⁻⁴	3.65×10 ⁻³ 7.77×10 ⁻⁴ 1.74×10 ⁻³	4.54×10 ⁻³ 1.93×10 ⁻³ 2.29×10 ⁻³

Dopant	ts/levels		Extracted parameters @700 °C and property analysis							
÷	¥	Со	k [cm/s]	D [cm²/s]	t_{relax}/τ_k	t_{relax}/τ_D	log(Bi)	Property limited by		
0.05	0.25	0.70	9.64×10 ⁻³	1.92×10 ⁻³	7.92×10 ¹	3.04×10 ²	0.584	both		
	0.275	0.675	4.77×10 ⁻⁴	3.08×10 ⁻³	1.41×10 ³	1.47×10 ²	-0.982	both		
	0.30	0.65	9.16×10 ⁻⁵	2.88×10 ⁻³	7.50×10 ³	1.64×10 ²	-1.66	Surface exchange		
0.10	0.20	0.70	1.96×10 ⁻⁴	4.54×10 ⁻³	3.67×10 ³	1.14×10 ²	-1.51	Surface exchange		
	0.25	0.65	6.30×10 ⁻⁴	1.93×10 ⁻³	1.07×10 ³	2.35×10 ²	-0.658	both		
	0.30	0.60	3.13×10 ⁻⁴	2.29×10 ⁻³	2.41×10 ³	2.48×10 ²	-0.988	both		

SOUTH CAROLINA

