

New Advances for Fischer-Tropsch Catalysis Christopher Matranga & Dushyant Shekhawat

Office of Research and Development August 2015

A <u>Simplified</u> View of Fischer-Tropsch Mechanistic Chemistry

6 general rxn steps:

(independent of model, catalysts, rxn conditions)

- Adsorption/activation
- Chain initiation
- Chain growth
- Product desorption
- Chain termination
- Readsorption/further rxn

The Fischer-Tropsch reaction

Ivo A.W. Filot, MSc, prof. Emiel J.M. Hensen, PhD, prof. Rutger A. van Santen, PhD

Institute for Complex Molecular Systems NRSC-Catalysis

3 widely considered mechanisms on Fe:

- Surface carbide (shown)
- Surface enol
- CO insertion

(1)

https://youtu.be/440U4JxEK4k

Where innovation starts

Technische Universiteit Eindhoven

University of Technology

Youtube Movie Credit: I. Filot, E. Hensen, R. van Santen Institute for Complex Molecular Systems, Eindhoven University of Technology

A Simplified View of Fischer-Tropsch Mechanistic Chemistry

6 general rxn steps:

(independent of model, catalysts, rxn conditions)

- Adsorption/activation
- Chain initiation
- Chain growth
- Product desorption
- Chain termination
- Readsorption/further rxn

3 widely considered mechanisms on Fe:

- Surface carbide (shown)
- Surface enol
- CO insertion

Ø

Surface Carbide Mechanism

Anderson-Shulz-Flory (ASF) Product Distributions

4

- Radical polymerization type distro
- Chain termination/progation are critical/rate-determining steps
- Occur for fully thermalized, "equilibrium" or "steady state" conditions

	Chain growth probability	Olefin/paraffin ratio	Carbon deposition	Methane selectivity
Temperature ↑	\downarrow	\downarrow	Ŷ	\uparrow
Pressure \uparrow	\uparrow	*	*	\downarrow
H₂/CO ratio ↑	\downarrow	\downarrow	\downarrow	\uparrow
Conversion \uparrow	*	\downarrow	\uparrow	\uparrow
Space velocity \uparrow	*	\uparrow	*	\downarrow

$$m_n = (1 - \alpha)\alpha^{n-1}$$
$$\alpha = \frac{R_p}{R_p + R_t}$$

Are Controlled Deviations from ASF Possible?

Nano-structured Catalyst Materials

Image from Wang et. al. ChemCatChem Doi: 10.1002/cctc.201000071

Potential Benefits

- Non Anderson-Shulz-Flory Product Distributions
- Stabilization of active catalyst phase
- Controlled production of oxygenates/aromatics
- Improved reactivity & conversion

Non-equilibrium Reactors (Microwave-MW)

Potential Benefits

- Non-thermal & Non-ASF Product Distributions
- Lowered reactor temperatures
- Improved kinetics, reactivity & conversion

Motivation from Previous Literature: Process Intensification w/Nano-Catalysis

Fe₂O₃ outside Carbon Nanotubes

100

Altered Product Distros

Table 2. Comparison of the FTS Activity and Product Selectivities at 51 bar

catalyst	CO conversion (%)	yield (g C ₅₊ /kg _{at} -h)	CO ₂ selectivity (%)	hydrocarbon selectivities (%)		
				CH4	C2-C4	C ₅₊
Fe-in-CNT	40	440	18	12	41	29
Fe-out-CNT	29	210	12	15	54	19
Fe/AC	17	61	5	15	71	9

National Energy Technology Laboratory

Data & Images from Bao et. al. JACS, doi: 10.1021/ja8008192

Recent Nano-catalyst results from ORD

Layered Graphene Catalyst Supports for Breaking ASF Distributions

Can this be exploited for FT ?

Adsorption Isotherms in Graphene Oxides

• More H₂ adsorbed than N₂ (size exclusion)

Ø

Nanostructured Fe₅C₂ "Häggs Phase"

10 nm Fe₅C₂

20 nm

X-ray diffraction confirms nano-Fe₅C₂ structure

- Fe₅C₂ Häggs phase one of most active phases for FT
- ORD synthesis produces high yield, gram, batches of nearly pure Fe₅C₂
- Nanoparticle shell is a mixed amorphous Fe-carbide/oxide

20 nm

• Future work will incorporate into layered graphene and/or carbon nanotube supports

Synchrotron X-ray characterization of nano- Fe₅C₂

O K edge X-ray absorbance

Fe L edge X-ray absorbance

- ASF arises from a radical chain polymerization process at thermal equilibrium
- Deviations from ASF require disrupting molecular processes on catalyst/support surface (adsorption, diffusion, etc)
- Microwave reactors offer additional opportunities to deviate from ASF
- Nano-structured Graphene and Fe₅C₂ have been synthesized and initial characterization started.