Pressurized Pyrolysis and Gasification of Biomass-Coal Blends

Gautami M. Newalkar¹; Pradeep K.Agrawal¹; Carsten Sievers¹; Kristiina Iisa², School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, National Renewable Energy Laboratory Email: pradeep.agrawal@chbe.gatech.edu Ph no: 404-894-2826

Motivation and Objectives

Motivation:

Coal, with high inorganic content in the form of Ca. Mg. Al. Si. Fe etc requires high temperatures for gasification. Biomass, a carbon-neutral, renewable feedstock, has higher gasification reactivity, attributed to its higher alkali content. Thus a blend of biomass and coal offers the potential of enhanced gasification reactivity while reducing carbon footprint. In addition, existing coal gasification infrastructure can be retrofitted to incorporate biomass as a co-feed.

Objectives:

- To explore conditions under which gasification synergies in co-feeding coal and biomass
- To define the role of operating parameters on the evolution of char morphology which would facilitate gasification rate enhancement
- To develop intrinsic L-H kinetic models for gasification that predict the effect of steam, CO2, CO, and H2

Results **Evolution of biomass char morphology** Effect of temperature at constant pressure (5 bars) Effect of pressure at constant temperature (600 °C)

Both XRD and Raman spectroscopy results correlate well with the observed gasification reactivities

Conclusions

- •Pyrolysis operating conditions (heating rate, temperature, pressure) lead to drastic differences in char morphology and reactivity.
- •PAHs (polyaromatic hydrocarbons) are secondary and tertiary tar species formed via olefin oligomerization within the char particles at high pressures.
- •High temperature char is mainly carbonaceous with large aromatic/ graphene like sheets.
- •Both alkali and Ca catalyze char gasification using steam or CO₂ and provide synergy during gasification of coal - biomass blends.
- •Coal gasification rates can be enhanced by blending with biomass chars or ash, but good contact between the two components is essential.

Acknowledgements

US DOE- NETL Grant (DE-FE0005339)