Performance & cost targets for sCO₂ heat exchangers
2015/10/15
Overview

- System concepts
- Operating conditions
- Performance targets
- Cost targets
WHR cycle vs RCBC

- 3 classes of HX
 - Recuperator (LT and HT)
 - Primary (heat source)
 - Heat rejection (water- or air-cooled)
Comparisons

WHR HX’s
- Recuperators
 - PCHE
 - T ~ 100-370°C (for 500°C turbine inlet)
 - P ~ 10 / 25 MPa
 - UA ~ 1000 kW/K each (10MW system)
- Primary
 - Finned tube
 - T ~ 550°C
- Heat rejection
 - Water-cooled PCHE or ?
 - Air-cooled fin-fan system

RCBC HX’s
- Recuperators
 - PCHE
 - T ~ 100-550°C (for 700°C turbine inlet)
 - P ~ 10 / 25 MPa
 - UA ~ 1000 kW/K each (10MW system)
- Primary
 - Application-dependent
 - T ~ 750°C
- Heat rejection
 - Same as WHR
 - Smaller due to higher cycle η
Performance targets

- Defining performance...
 - Effectiveness
 - UA
- Can’t lose sight of either
 - You pay for UA
 - Design may limit effectiveness
Effectiveness and UA vs cycle efficiency

- Strong non-linearity in UA drives cost/kW
- Assumes pure counter-flow geometry
 - PCHE approximates this
 - Shell & tube, Shell & plate require many shells in series for high effectiveness
- Any new HX technology needs to be able to economically attain high effectiveness
Performance targets

- Cycle optimization drives $C_r \left(\frac{C_{\text{min}}}{C_{\text{max}}} \right)$ toward 1
Details that diverge from counterflow...

For example, cross-flow headers...

...limit maximum effectiveness
S&T just can’t get there

- Need at least 8 shell passes to reach 90% effectiveness
Cost targets

- Current technology, recuperators can be ~ 30-35% of total equipment cost
- Some of the size and much of the weight advantage of sCO₂ turbomachinery is taken back by recuperators
- 30% reduction in HX cost would have meaningful impact on system cost