

DOE Initiative on SCO2 Power Cycles (STEP) - Heat Exchangers: A Performance and Cost Challenge -

EPRI-NETL Workshop on Heat Exchangers for SCO2 Power Cycles San Diego, CA; October 15, 2015

Rich Dennis, Technology Manager

Presentation Outline DOE Initiative on SCO2 Power Cycles (STEP) - Heat Exchangers: A Performance and Cost Challenge -

- Why SCO2 Power Cycles
- FE Applications of SCO2 Power Cycles
- Recuperators for SCO2 Power Cycles
- Overview of the DOE SCO2 Crosscut Initiative
- Summary

Why Use Supercritical CO₂ (SCO2) for Power Cycles?

- Applicable to multiple heat sources for indirect heating
- Potential for higher efficiency relative to traditional power cycles
 - -Double recuperated with recycle compressor
 - -Beneficial properties near the critical point
- Closed cycle (noncondensing)
- Reduced turbomachinery sizes
- CO₂ is generally stable, abundant, inexpensive, non-flammable, and less corrosive than H₂O

Common FE, NE, EERE Application Space

Application	Size [MWe]	Temperature [°C]	Pressure [MPa]
Nuclear (NE)	10 - 300	350 – 700	20 – 35
Fossil Fuel (FE) (Indirect heating)	300 – 600	550 – 900	15 – 35
Fossil Fuel (FE) (Direct heating)	300 – 600	1100 – 1500	35
Concentrating Solar Power (EERE)	10 - 100	500 – 1000	35
Shipboard Propulsion	<10 - 10	200 – 300	15 – 25
Waste Heat Recovery (FE)	1-10	< 230 – 650	15 – 35
Geothermal (EERE)	1 – 50	100 - 300	15

FE Applications of the Indirect and Direct Supercritical CO₂ Power Cycle

Generator

Cycle/Component		Inlet		Outlet	
		Т (С)	P (MPa)	T (C)	P (MPa)
t	Heater	450-535	1-10	650-750	1-10
dire	Turbine	650-750	20-30	550-650	8-10
<u> </u>	НХ	550-650	8-10	100-200	8-10
Ļ	Combustor	750	20-30	1150	20-30
irec	Turbine	1150	20-30	800	3-8
	НХ	800	3-8	100	3-8

Recuperator Discussion

ENERGY National Energy Technology Laboratory

Recompression Closed Brayton Cycle ~ 2/3 of the heat in the cycle is recuperated

Pressure vs. Specific Enthalpy Diagram

Heat Transfer = Overall HX Coef. * Area * Temperature Difference Q = U*A* Δ T

As ΔT decreases, effectiveness increases, but the area must increase to make up for the decrease in ΔT

- Increasing the contact area generally results in an increase in volume of material required
- Heat exchangers are often characterized by the ratio of contact area to volume:

$$\beta = A/V$$

- Heat transfer coefficient increases with an increase in turbulence, but so does pressure drop
- Increasing heat transfer coefficient, U, allows less contact area, A, and a smaller heat exchanger
 Q = U*A*ΔT
- However for a given heat exchanger design, increasing U comes with the penalty of increased pressure drop

Vendor Inquiries for Recuperators *Recuperators for a 550 MWe power plant*

- OF PFBC w/ SCO2 power cycle
 - 550 MWe; 1280 MWth,
 - 50.5 cycle efficiency
 - 2993 MWth HTR / 750 MWth LTR

• Recuperator development plans

- Development plan
- Qualifications
- +/- 30 % cost estimate
- Compactness criteria 700 m²/m³

Vendors requested to provide

- conceptual design, development plan, commercial cost estimate
- Limited vendor response

Turbine Technology Program Phase III – Task 1(a) & (b): Supercritical CO2 Turbomachinery (SCOT) System Studies Incorporating Multiple Fossil Fuel Heat Sources and Recuperator Development; DE-FE0004002, 6/1/2013, Aerojet Rocketdyne, Canoga Park, California 10

Vendor Inquiries for Recuperators *Recuperators for a 550 MWe power plant*

- Suggested materials: Inconel (HTR), 316H (LTR)
- Allow delta P to double -> 10 to 20 psi
 - Allows over all mass to be reduced by 2x
 - Core matrix volume can be reduced by 25 % cuts price in half
- Cost range for mature commercial product
 - (~\$120M ~ \$280M)
 - Savings ~ \$160 M yields 7.2 % reduction in COE (0.88 Cents/kwh)

Challenges

- Balancing cost, performance and cycle optimization
- Optimizing design for the application
- Facilities for the fabrication of commercial systems

Recompression Brayton Cycle

National Energy Technology Laboratory

12

Recompression Brayton Cycle Baseline Cycle Operating Parameters

Parameter	Value		
Working fluid	CO ₂		
Compressor pressure	Varied		
Compressor efficiency	0.85		
Turbine inlet temperature	1300 °F		
Turbine exit pressure	1320 psia		
Turbine efficiency	0.927		
Cooler pressure drop	20 psia		
Cooler temperature	95 °F		
Heater pressure drop	20 psia		
Heater duty	100 MMBtu/hr		
Minimum temperature approach	10 °F		
High temp recuperator cold side pressure drop	20 psia		
High temp recuperator hot side pressure drop	20 psia		
Low temp recuperator cold side pressure drop	20 psia		
Low temp recuperator hot side pressure drop	20 psia		
Cooler bypass fraction	0.2853		

An Assessment of Supercritical CO_2 Power Cycles Integrated with Generic Heat Sources, 13 9/10/2014 DOE/NETL-4001/09/091014, Presented at the 4th Symposium on SCO2 Power Cycles

Recompression Brayton Cycle

Sensitivity to Pressure Drop

National Energy Technology Laboratory

Recompression Brayton Cycle *Sensitivity Analysis to Cooler Bypass Fraction*

Recompression Brayton Cycle *Sensitivity Analysis to Turbine Efficiency*

Materials Considerations for Recuperators

Maximum Allowable Stress per ASME Section II, Part D

- TIT = 700C -> recuperator inlet temp. would be ~ 580C (1080F) red line
- Stress levels < ~10 ksi for SS and higher for more expensive nickel-alloys

FE Project Activities in SCO2 Based Power Cycles

- Turbo Machinery for Indirect and Direct SCO2 Power Cycles
 - Low-Leakage Shaft End Seals for Utility-Scale SCO2 Turbo (GE)
 - Adv. Turbomachinery Comp. for SCO2 Cycles (Aerojet Rocketdyne)
- Oxy-fuel Combustors for SCO2 Power Cycles
 - Coal Syngas Comb. for HP Oxy-Fuel SCO2 Cycle (8 Rivers Capital)
 - HT Combustor for Direct Fired Supercritical Oxy-Combustion (SwRI)
 - Oxy Fuel Combustion (NETL)
 - Autoignition and Combustion Stability of High Pressure SCO2 Oxy-Combustion (GA Tech)
 - Chemical Kinetic Modeling and Experiments for Direct Fired sCO2 Combustor (UCF)
- Recuperators / Heat Exchangers for SCO2 Power Cycles
 - Low-Cost Recuperative HX for SCO2 Systems (Altex Tech. Corp)
 - Mfg. Process for Low-Cost HX Applications (Brayton Energy)
 - Design, Fab, and Char. Microchannel HX for FE SCO2 cycles (Oregon State U)
 - HT HX for Systems with Large Pressure Differentials (Thar Energy)
 - Thin Film Primary Surface HX for Advanced Power Cycles (SwRI)
 - HX for SCO2 Waste Heat Recovery (Echogen / PNNL, SBIR)
- Materials, Fundamentals and Systems (AT)
 - R&D materials & systems (NETL)
 - Materials Issues for Supercritical carbon Dioxide (ORNL)
 - Thermodynamic and Transport Properties of SCO2 (NIST)

FE Project Activities in SCO2 Based Power Cycles

- Turbo Machinery for Indirect and Direct SCO2 Power Cycles
 - Low-Leakage Shaft End Seals for Utility-Scale SCO2 Turbo (GE)
 - Adv. Turbomachinery Comp. for SCO2 Cycles (Aerojet Rocketdyne)
- Oxy-fuel Combustors for SCO2 Power Cycles
 - Coal Syngas Comb. for HP Oxy-Fuel SCO2 Cycle (8 Rivers Capital)
 - HT Combustor for Direct Fired Supercritical Oxy-Combustion (SwRI)
 - Oxy Fuel Combustion (NETL)
 - Autoignition and Combustion Stability of High Pressure SCO2 Oxy-Combustion (GA Tech)
 - Chemical Kinetic Modeling and Experiments for Direct Fired sCO2 Combustor (UCF)
- Recuperators / Heat Exchangers for SCO2 Power Cycles
 - Low-Cost Recuperative HX for SCO2 Systems (Altex Tech. Corp)
 - Mfg. Process for Low-Cost HX Applications (Brayton Energy)
 - Design, Fab, and Char. Microchannel HX for FE SCO2 cycles (Oregon State U)
 - HT HX for Systems with Large Pressure Differentials (Thar Energy)
 - Thin Film Primary Surface HX for Advanced Power Cycles (SwRI)
 - HX for SCO2 Waste Heat Recovery (Echogen / PNNL, SBIR)
- Materials, Fundamentals and Systems (AT)
 - R&D materials & systems (NETL)
 - Materials Issues for Supercritical carbon Dioxide (ORNL)
 - Thermodynamic and Transport Properties of SCO2 (NIST)

Thar Energy Recuperator Development Projects

High Temperature Heat Exchanger Design and Fabrication for Systems with Large Pressure Differentials

Thar Energy

- Prime contractor
- Technical gap assessment
- Prototype recuperator
 - > Design
 - Fabrication
- Test stand design and assembly
- Recuperator testing and evaluation

SwRI

• FEA modeling

Bechtel Propulsion

- Technical Support
 - Materials science
 - Prototype testing

Technology Development of Modular, Low-Cost, High-Temperature Recuperators for sC02 Power Cycles

Thar Energy

- Prime contractor
- Technical gap assessment
- Design for manufacturing
 - Focus manufacturability & cost
 - Multiple design analysis
- Design for operability, prototyping, & fabrication
 > Down select
- Final Design for manufacturability
- Recuperator fabrication

SwRI

- Combined system engineering design
- Thermodynamic analysis
- FEA modeling

ORNL

- Materials science
 - > Long-term corrosion resistance
 - > Creep resistance
 - New alloy and/or coating formulation

Georgia Institute of Technology

• CFD simulation & analysis of heat exchanger concepts

In Summary Recuperator Challenges for SCO2 Power Cycles

- Objectives
 - Maximize heat transfer efficiency
 - Minimize pressure drop
 - Ensure even flow distribution
 - Minimize Cost
- Challenges
 - Seals and pressure containment
 - Materials strength and stability
 - Oxidation resistance
 - Fouling effects

DOE SCO2 Crosscut Initiative

- One of a handful of recognized intra-office DOE crosscut teams
- Nuclear Energy (NE), Fossil Energy (FE) and Energy Efficiency & Renewable Energy (EERE) collaborate on SCO2 power cycles
- Based on advantages of SCO2 power cycles
 - Heat source neutral
 - Applicability to wide range of stakeholders
 - Potential higher efficiency and lower COE
- Mission
 - Realize a lower COE with SCO2 power cycles compared to SOTA steam cycles
 - Reduce technical barriers and risks to commercialization

SCO2 Crosscut Initiative *Status / Accomplishments*

- Request for Information
 - RFI 1 & RFI 2
- Workshops
 - SwRI/NETL/SNL/NREL; June 2014; September 2014
- Symposium and Conferences
 - ASME IGTI Turbo Expo & Int. Symp. on SCO2 PC
- Collecting information for an effective solicitation
 - Technical approach and cost for a 10 MWe facility
- On going SCO2 base programs with FE, EERE and NE
 - Focusing on respective technology application issues

SCO2 Crosscut Initiative *Next Steps / Path Forward*

- DOE Offices of NE, FE & EERE collaborating on this initiative
- "...gather information and engage industry to develop an effective solicitation for a public-private cost-shared supercritical carbon dioxide demonstration program...."⁽¹⁾
- "..10-megawatt supercritical CO2 technology electric power (STEP) demonstration project.." (2)

(1) http://docs.house.gov/billsthisweek/20141208/113-HR83sa-ES-D.pdf;
 (2) http://energy.gov/news-blog/articles/secretary-monizs-written-testimony-house-committee-appropriations-subcommittee

Summary

- SCO2 power cycles provide an attractive alternative to the incumbent H₂O based Rankine cycles
 - Efficiency
 - Broad application to heat sources
 - Characteristic benefits
- Unique and ubiquitous market entry points
- Near term technology challenges
 - Recuperators
 - Turbomachinery
 - Materials
 - Controls
 - COE
- DOE sCO₂ Crosscut Initiative
 - Plan for an effective cost shared solicitation

SCO₂ Turbine

Recycle Compressor

Main Compressor

Upcoming Events

EPRI INTERNATIONAL CONFERENCE ON CORROSION IN POWER PLANTS

October 13 – 15, 2015 • Hilton Mission Bay • San Diego, California USA

 NETL-EPRI WORKSHOP ON HEAT EXCHANGERS FOR SUPERCRITICAL CO₂ POWER CYCLES

October 15, 2015 • Co-located with EPRI International Conference on Corrosion in Power Plants

2015 UNIVERSITY TURBINE SYSTEMS RESEARCH WORKSHOP

November 3-5, 2015 Georgian Terrace Hotel, Atlanta, Georgia

anarch

U.S. Department of Energy | Office of Fossil Energy | National Energy Technology Laboratory | Georgia Institute of Technology

CHARLOTTE CONVENTION CENTER | CHARLOTTE, NC USA | GO.ASME.ORG/POWERENERGY

ASME IGTI GAS TURBINE FORUM 2016

Turbomachinery Technical Conference & Exposition

Presented by the ASME International Gas Turbine Institute

CONFERENCE June 13 - 17, 2016 EXHIBITION June 14 - 16, 2016

COEX Convention & Exhibition Center, Seoul, South Korea

The 5th International

Supercritical CO₂ Power Cycles Symposium

^{will be held} March 29 to 31, 2016 ⁱⁿ San Antonio, Texas

National Energy Technology Laboratory

It's All About a Clean, Affordable Energy Future

For More Information, Contact NETL the ENERGY lab

Delivering Yesterday and Preparing for Tomorrow

