

Corrosion of Nickel-Base Alloys in Supercritical CO₂ Environment

David Adam Jacob Mahaffey Arjun Kalra Dr. Mark Anderson Dr. Kumar Sridharan

EPRI International Conference on Corrosion in Power Plants, October 12-15, 2015, San Diego, CA

Outline

- Motivation/Background
- Testing Facility and Procedure
- Results
- Discussion
- Conclusions

Motivation/Background

Allowable Stresses for Alloys of Interest 50 45 40 Allowable Stress [ksi] 15 10 5 0 400 800 1000 200 0 Temperature [C] Haynes 230 — Haynes 625 — Haynes 282 Estimated Data for IN740, Haynes 282 from:

Weitzel, P., Steam Generator for Advanced Ultra Supercritical Power Plants 700C to 760C, Proceedings of the ASME 2011 Power Conference July 12-14, 2011, Denver, Colorado, USA

- High temperature, high pressure conditions of SCO₂ Brayton cycle environments require suitable materials
- Must understand corrosion phenomena to withstand these extreme environments
- Long-term corrosion can lead to:
 - Reduction in effective wall thickness
 - Reduction of thermal conductivity
 - Corrosion debris

High Temperature, High Pressure SCO₂ Test Facility

- Testing temperature up to 750°C
- Temperature control allows system to operate within ±1°C
- Pressures up to 3600±2 psi (temperature dependent)
- System operates at an average flow rate of .11kg/hr
 - CO₂ refresh rate every two hours

Current setup of test facility

Sample Holder with Samples

- Sample holder made out of Haynes 625 alloy
- Samples are 0.5"x0.5"x0.0625" square coupons
- Alumina rod suspends samples in continuous stream of CO₂
- Alumina spacers separate samples
- Fits up to 70 samples

Testing Procedure

- Untested samples polished to 800 grit, then cleaned with ethanol and DI water
- Weight measurements are accurate to ± 2µg and dimensions have an accuracy of ± 2µm
- Samples are tested at 20 MPa and 450°C-750°C at 200 hour intervals up to 1000 hours
- Samples analyzed using SEM, EDS, XRD, etc.

Composition of Alloys by Weight %

	С	Mn	Fe	Si	Cu	Ni	Cr	AI	Ti	Со	Мо	Nb	W
IN740 (Special Metals)	0.023	0.245	0.1491	0.17	0.015	50.04	24.57	1.33	1.33	20.09	0.35	1.46	0.022
H230 (Haynes)	0.1	0.52	1.02	0.31	0.04	Bal~59.94	22.08	0.37	0.01	0.21	1.23		14.17
H625 (Haynes)	0.02	0.26	5	0.25		Bal~59.63	21.89	0.22	0.29	0.28	8.59	3.51	
H282* (Haynes)	0.06	0.3	1.5	0.15		57	20	1.5	2.1	10	8.5		
Ni-20Cr*						80	20						

* - nominal composition

Frace Elements:								
Alloy	S	Та	Ρ	В	Ν	V	Zr	La
IN740	0.003	0.004	0.0023	0.0013	0.0038	0.012	0.021	
H230	0.002			0.002				0.012
H625	0.002	0.05	0.006					

Research and Industrial Grade CO2 Gas Certificates

	Research Grade CO ₂	Industrial Grade CO ₂	
Component	Purity Limits	Purity Limits	
CO2	99.999%	99.5%	
Ar+O ₂ +CO	<1 ppm	<50 ppm	
Total Hydrocarbons	<1 ppm	<50 ppm	
Moisture	<3 ppm	<32 ppm	
Nitrogen	<5 ppm		

Gas analysis has been conducted by third party

Haynes 230 Weight Change Data

	Pt. 1	Pt. 2			
Cr	64.42	48.94			
Mn	20.91	2.88			
Fe		1.03			
Ni	9.52	41.38			
Мо	4.12	1.26			
W	0.5	4.33			
Atomia Darcont					

Atomic Percent

Highest weight gain for each temperature					
	IG	RG			
550°C		\checkmark			
650°C		\checkmark			
750°C	\checkmark				

- Overall highest weight gain: 750°C IG
- Uniform chromia with Mn/Mo oxide clusters present

Haynes 625 Weight Change Data

	Point
Ti	24.95
Cr	63.24
Mn	4.06
Ni	5.99
Nb	0.32
Мо	0.98
Atomic	Percer

Highest weight gain for each temperature					
	IG	RG			
550°C		\checkmark			
650°C	Similar	Similar			
750°C	Similar	Similar			

- Overall highest weight gain: 750°C RG
- Very little difference between 650°C RG, and 650°C IG
- Very little difference between 750°C RG, and 750°C IG
- Uniform chromia with Ti/Mn
 oxide clusters present

Haynes 282 Weight Change Data

Highest weight gain for each temperature					
	IG	RG			
650°C		\checkmark			
750°C		\checkmark			

- Overall highest weight gain: 750°C RG
- Uniform chromia with Ti oxide clusters present
- Highest weight gain of all alloys at 750°C

Inconel 740 Weight Change Data

Highest weight gain for each temperature					
	IG	RG			
650°C		\checkmark			
750°C		\checkmark			

- Overall highest weight gain: 750°C RG
- Uniform chromia with Ti/Mo oxide clusters present
- Increased corrosion along grain boundaries

20 un

Ni-20Cr Binary Alloy Weight Change Data

Highest weight gain for each temperature					
	IG	RG			
750°C		\checkmark			

- Highest weight gain: 750°C RG
- Uniform chromia with Mo oxide clusters present
- Mo oxide clusters believed to be from volatilized Mo oxide from other samples or from Haynes 625 autoclave[†]

^{† -} Smolik, G.R., Petti, D.A., Schuetz, S.T., (2000). "Oxidation, Volatilization, and Redistribution of Molybdenum from TZM Alloy in Air." Idaho National Engineering and Environmental Laboratory, INEEL/EXT-99-01353

Surface SEM of H230 in IG/RG CO₂ after 400 hours at 650C

- Large carbon clusters observed on the surface of the sample tested in RG-CO₂
- Clusters reduced significantly for IG sample
- Caused by compositional differences in gas (O₂, N₂, H₂O, Hydrocarbons)
- Phenomena believed to be attributable to Boudouard reaction

Gibbs Free Energy Diagram for Carbon Removal in Carbon Dioxide

- HSC Chemistry used for thermodynamic modeling of Boudouard Reaction
- CO₂ + C → 2CO becomes thermodynamically favorable at 700°C
- Reaction believed to be present in 750°C testing, removing free carbon and thus impacting weight gain as seen in H230 and H625

Graphite Testing

Surface Roughness Measurements [µm]

	Untested Graphite	200 hrs at 650ºC	200 hrs at 750⁰C
Average	0.357	0.648	4.01
St-Dev	0.0808	0.222	1.02
Relative Roughness		1.82	11.2

- 750°C graphite samples lost 15 times more weight than samples exposed to 650°C CO₂
- 750°C samples have 6 times the surface roughness than those exposed to 650°C
 - Carbon is removed from graphite at a much faster rate at temperatures above 700°C

Extrapolated Weight Gain

 Weight gain data fit using power law to give yearly extrapolated weight gain

 $W = a \cdot t^n$

- W = weight change [mg/cm²]
- a = pre-exponential factor
- t = time [hours]
- n = growth parameter

Extrapolated Oxide Thickness

- Method to evaluate oxide thickness of alloys investigated
- Calculation of effective oxide density:

 $Effective Oxide Density = \frac{Experimental Weight Change}{Experimental Oxide Thickness}$

Use effective oxide density to calculate extrapolated oxide • thickness

Extrapolated Weight Gain Extrapolated Thickness = -Effective Oxide Density

Effective Oxide Density Calculation

Haynes 230, 650°C RG SC-CO₂, 600 hours

Example:

From Processed Image: $0.799 \pm 0.123 \mu m$ Weight Gain of H230: $1.23 \mu g/cm^2$ Effective Density of H230: $1.54 g/cm^3$

Averaging across all 230 and 625 alloys, Effective Density: $1.79 \pm .25 \text{ g/cm}^3$

Effective Oxide Thickness for Example: 0.573 µm/year

Effective Oxide Density Discussion

- Chromia assumed to be only numerically significant contributor to oxide weight and thickness
- Calculated effective oxide density much less than that of chromia (1.79 g/cm³ effective vs 5.22 g/cm³ theoretical)
 - Attributable to oxide porosity and cracking
- All alloys satisfied less than 30 [µm/year] at all conditions except IN740 at 750°C IG
 - Data for IN740 at only 750°C IG available through 600 hours, could be power fit artifact
- Further investigations include alloy specific oxide thicknesses

Conclusions

Alloy	Oxide	Surface Features	Weight gain [mg/cm ²] 1000 hours 750ºC RG	Yearly extrapolated thickness [microns] 750°C RG	Presence of Carbon
H230	Chromia	Mn/Mo oxide clusters	0.1087*	10.3 at 450°C RG	RG 650ºC
H625		Ti/Mn oxide clusters	0.1635*	4.99 at 750⁰C IG	RG 650°C
H282		Ti oxide clusters	0.4837*	10.6 at 750ºC RG	RG 650°C
IN740		Ti/Mo oxide clusters	0.2863*	89.0 in at 750⁰C IG	‡
Ni-20Cr		Mo oxide clusters	0.2929*	15.5 in at 750ºC RG	‡

- * No spallation observed on any sample surfaces
- [‡] presence of carbon not tested for in IN740 and Ni-20Cr

Conclusions

Alloy	Oxide	Surface Features	Weight gain [mg/cm ²] 1000 hours 750ºC RG	Yearly extrapolated thickness [microns] 750°C RG	Presence of Carbon
H230	Chromia	Mn/Mo oxide clusters	0.1087*	10.3 at 450ºC RG	RG 650°C
H625		Ti/Mn oxide clusters	0.1635*	4.99 at 750⁰C IG	RG 650ºC
H282		Ti oxide clusters	0.4837*	10.6 at 750ºC RG	RG 650°C
IN740		Ti/Mo oxide clusters	0.2863*	89.0 in at 750⁰C IG	‡
Ni-20Cr		Mo oxide clusters	0.2929*	15.5 in at 750ºC RG	‡

- * No spallation observed on any sample surfaces
- [‡] presence of carbon not tested for in IN740 and Ni-20Cr

Backup Slides

Presence of Molybdenum on Ni-20Cr Alloys Exposed to CO2 at 750°C

Add explanatory text here

310SS (750°C/1000hr) Moly Evidence

Trends observed through weight gains

450°C	H230			H625					
	Notes	Simila	Similar weight change, less than 0.02 mg/cm ² difference						се
550°C					H230			H625	
	Higher weight gain environment				RG-CO ₂			RG-CO ₂	
650°C				H230	H625	H282		IN740	
	Higher w environn	veight gai nent	n	RG-CO ₂	RG-CO ₂	RG-CC	D ₂	RG-CO ₂	
750°C				H230	H625	H282		IN740	Ni-20Cr
	Higher weight gain environment			IG-CO ₂	Similar	RG-CC	D ₂	RG-CO ₂	RG-CO ₂
H230 V	S H625		H230		H625				
	Notes Ex			hibited similar/lesser weight gain at 750°C than 650°C					

Research and Industrial Grade CO2 Gas Certificates

Airgas Certificates

Isotech Labs Analysis

	Research Grade CO ₂	Industrial Grade CO ₂
Component	Purity Limits	Purity Limits
CO ₂	99.999%	99.5%
AR+O ₂ +CO	<1 ppm	<50 ppm
Total Hydrocarbons	<1 ppm	<50 ppm
Moisture	<3 ppm	<32 ppm
Nitrogen	<5 ppm	

Observiced	ıl
Component Chemical Component Component mol. %	
Carbon Monoxide nd Carbon Monoxide nd	-
Helium nd Helium nd	
Hydrogen nd Hydrogen nd	
Argon nd Argon nd	
Oxygen nd Oxygen nd	
Nitrogen nd Nitrogen nd	
Carbon Dioxide 100.00 Carbon Dioxide 100.00	
Methane nd Methane nd	
Ethane nd Ethane nd	
Ethylene nd Ethylene nd	
Propane nd Propane nd	
Propylene nd Propylene nd	
Iso-butane nd Iso-butane nd	
N-butane nd N-butane nd	
Iso-pentane nd Iso-pentane nd	
N-pentane nd N-pentane nd	
Hexanes + nd Hexanes + nd	

*Limit of detection: 100 ppm

Trends observed through weight gains

450°C

H230 and H625 exhibited similar weight gains in RG-CO₂ on the order of 0.02 mg/mm2 after 1000 hours of exposure

550°C

• H230 and H625 exhibited higher weight gains in RG-CO₂ compared to IG-CO₂

650°C

• H230, H625, H282, IN740 exhibited higher weight gains in RG-CO₂ compared to IG-CO₂

750°C

- H282, IN740, Ni-20-Cr exhibited higher weight gains in RG-CO₂ compared to IG-CO₂
- H625 exhibited similar weights gains between RG-CO₂ and IG-CO₂
- H230 exhibited lower weight gains in RG-CO₂ compared to IG-CO₂

H230 vs H625

• H230 and H625 exhibited similar or lower weight gains at 750°C compared to 650°C for RG-CO₂

Gibbs Free Energy Diagrams for Carbon Removal in Carbon Dioxide and Oxygen

- HSC Chemistry thermodynamics modeling of the Boudouard Reaction
- Both CO₂ and O₂ can react with carbon
 - O₂ + C is a much more favorable reaction
 - CO₂ + C becomes thermodynamically favorable at 700°C

Gibbs Free Energy Diagrams for Carbon Removal in CO2 and Metal Carbides

- Free carbon has been observed to form carbides along grain boundaries
- CO₂ can react with carbides to remove carbon
- Consistent with weight loss in SiC samples