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Intelligent Optical 
Systems, Inc. (IOS)

 Founded in April, 1998
 Focus areas: 

 Physical, chemical, and biomedical 
optical and electronic sensors

 Advanced light sources and detectors
 >$3.5M in equipment
 11,500 sq. ft. facility in Torrance, CA
 Several spin-off companies with >$22M in 

private funding



3

 Problem & Technology

 Project Phases

 Progress
 Evaluation at elevated pressure and temperature
 Study under stress conditions
 Initial field testing of deployment system, elements, and protocols.

 Planned Work

 Conclusions

Intrinsic Fiber Optic Chemical Sensors for 
Subsurface Detection of CO2
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Problem/Opportunity

Reliable and cost-effective monitoring is important to 
making gas sequestration safe.

Desirable analytical systems characteristics:
 Provide Reliable Information
 Monitor continuously
 Cover large areas
 Operate for years with little or no maintenance
 Cost effective
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Technology

Distributed intrinsic fiber optic sensors for the direct
detection of carbon dioxide.

Unique Characteristics
 Direct measurement of CO2

 The entire length of an optical fiber 
is a sensor

 Sensors are capable of monitoring 
CO2 in water and in gas phase.
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Technology
Zone-by-zone monitoring using a sensor cable 
with multiple sensor segments
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 A silica glass core fiber is coated with a polymer cladding containing a 
colorimetric indicator. Upon exposure of any segment of the fiber, the CO2
diffuses into the cladding and changes color.

 A light source is placed at one end of the fiber and a photodetector at the other 
end. The light transmitted through the fiber varies with the concentration of CO2.

(Left) Fiber structure of colorimetric distributed fiber optic sensors; (right) fiber optic CO2 sensor rolled onto a spool. 
Microscopic detail shows uncoated fiber, and fiber coated with the sensitive cladding.

Technology
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CO2

CO2

Technology

 The optical fiber must be exposed 
to the aqueous matrix (or gas)

 Sensor cable incorporating 
multiple optical fiber sensors, 
which are exposed to the 
environment.



9

Phase I
 Development of advanced intrinsic fiber optic sensors and readout 

(length up to 2,500 ft. and able to withstand corrosive liquids).

 Sensor evaluation and demonstration in simulated subsurface 
conditions.

 Pressure
 Temperature

Phase II

 Subsurface sensor deployment and operation (in a 5,900 ft. deep well 
at up to 2,000 psi).

Phase III

Project Phases
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 The transmission of light through the fiber depends on the concentration of CO2, and is
reversible.

 Light at wavelengths far from the absorbance of the indicator dye are unaffected by the
presence of CO2, which enables the system to be self-referenced.
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Testing at Simulated Subsurface Conditions
Pressure

Sensor fiber spool

Optical connector
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Gas 
cylinders

Pressurized 
vessel

Injection pumps

Control unit

 Sensors immersed in water inside
the pressurized vessel

 Injection pumps control gas flow
and pressure

 Gas cylinders with different CO2
concentration (%) are used

 Experiment Type 1: Constant CO2
concentration and increasing
pressure

 Experiment Type 2: Constant
pressure and varying CO2
concentration

Testing at Simulated Subsurface Conditions
Pressure
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Testing at Simulated Subsurface Conditions
Pressure
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Progress – Simulated Subsurface Conditions
Pressure

Test 1: Nitrogen cylinder and increasing total pressure (black)
Test 2: 6% CO2 in nitrogen cylinder and increasing total pressure (green)
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CO2 Partial Pressure (psi)
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Testing at Simulated Subsurface Conditions
Temperature

Time (s)

310 315 320 325 330 335

R
ef

er
en

ce
 S

ig
na

l (
co

un
ts

)

30000

35000

40000

45000

50000

55000

60000

S
en

so
r S

ig
na

l (
co

un
ts

)

30000

35000

40000

45000

50000

Time (minutes)

350 355 360 365 370 375

R
ef

er
en

ce
 S

ig
na

l (
co

un
ts

)

30000

35000

40000

45000

50000

55000

60000

S
en

so
r S

ig
na

l (
co

un
ts

)

20000

30000

40000

50000

Temperature 40C

Nitrogen Nitrogen Nitrogen

25% CO2 25% CO2

Temperature 60C

Nitrogen Nitrogen Nitrogen

25% CO2
25% CO2

Time (s)

250 255 260 265 270

R
ef

er
en

ce
 S

ig
na

l (
co

un
ts

)

30000

35000

40000

45000

50000

55000

60000

S
en

so
r S

ig
na

l (
co

un
ts

)

30000

32000

34000

36000

38000

40000

42000

44000

Temperature 80C

Nitrogen Nitrogen Nitrogen

25% CO2 25% CO2

Time (s)

175 180 185 190 195 200

R
ef

er
en

ce
 S

ig
na

l (
co

un
ts

)

30000

35000

40000

45000

50000

55000

60000

S
en

so
r S

ig
na

l (
co

un
ts

)

34000

35000

36000

37000

38000

39000

40000
Temperature 100C

Nitrogen Nitrogen Nitrogen

25% CO2 25% CO2



19

Progress – Simulated Subsurface Conditions
Temperature
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Time (minutes)
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 Demonstrated sensor operation up to 175°C
 Sensor aging is significantly accelerated at temperatures >140°C
 As expected, sensitivity decreases with temperature because the CO2 solubility

in the sensitive polymer decreases.

Progress – Simulated Subsurface Conditions
Temperature
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Progress – Accelerated Degradation Tests

 Stress Conditions
 High-power lighting
 Corrosive matrix (low pH and high salinity)
 Elevated water flow rate
 Highly biologically-contaminated matrix
 Temperature cycles.

 We designed Accelerated Degradation Tests (ADT) based on the
Highly Accelerated Life Test (HALT) methodology.
 The first objective is to collect information that allows us to

improve sensor lifetime
 The second objective is to quantitatively estimate the lifetime

of the fiber optic sensors.
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Progress – Accelerated Degradation Tests

 Sensor films covered with a protective, gas-permeable coating were
exposed to a highly biologically-contaminated matrix

 The antimicrobial effect of three coating materials was measured
 The CO2-sensitive polymer was replaced with an oxygen-sensitive

polymer.

Oxygen sensitive film 
covered by protective 
cladding materials

Control in 
DI water

Highly colonized 
nutrient media

Samples exposed to
continuous bacteria incubation
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Progress – Accelerated Degradation Tests
 Sensor films covered with a protective, gas-permeable coating were

exposed to a highly biologically-contaminated matrix
 The CO2-sensitive polymer was replaced with an oxygen-sensitive

polymer
 Bacteria was allowed to grow on the polymer for several weeks
 The antimicrobial effect of three coating materials was measured by

measuring the oxygen consumption of the biological layer on the
polymer.
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Progress – Accelerated Degradation Tests

 Sensor fiber segments were exposed to elevated water flow rates for
several months

 Sensitivity to CO2 was measured periodically.

Fiber optic sensor prototypes
Exposed to continuous water flow

Water pump

Fiber optic sensor prototypes
Control samples
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Progress – Accelerated Degradation Tests

 Sensor fiber segments were exposed to elevated water flow rates for
several months

 Sensitivity to CO2 was measured periodically.
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Progress – Accelerated Degradation Tests

 Sensor fiber segments were exposed to ambient and elevated
temperature cycles

 Sensitivity was measured before and after each temperature cycle
 In parallel, sensor fiber segments were maintained at elevated

temperature and sensitivity was measured periodically.

Temperature Cycle A (n cycles)
Cycle B (m cycles)

Temperature 2

Temperature 1

Temperature ST Test Test Test Test
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Progress – Accelerated Degradation Tests

 Sensor fiber segments were exposed to ambient and elevated
temperature cycles.

Test Progress
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Progress – Accelerated Degradation Tests

 Sensor fiber segments were exposed to ambient and elevated
temperature cycles.

Test Progress
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Progress – Accelerated Degradation Tests
 Sensor fiber segments were exposed to ambient and elevated

temperature cycles, and sensitivity was measured periodically (black)
 In parallel, sensor fiber segments were maintained at elevated

temperature and sensitivity was measured periodically (blue)
 Eight ADT cycles corresponded with 3 years/1,095 days of sensor

operation at constant temperature.

Thermal ADT Cycles
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Progress – Accelerated Degradation Tests
 Sensor fiber segments were exposed to ambient and elevated

temperature cycles, and sensitivity was measured periodically (black)
 In parallel, sensor fiber segments were maintained at elevated

temperature and sensitivity was measured periodically (blue)
 Eight ADT cycles corresponded with 3 years/1,095 days of sensor

operation at constant temperature.
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Progress – Accelerated Degradation Tests

 Based on the ADT studies, and assuming linear decrease in sensitivity
over time, we predict ~10 years of sensor service life.
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Sensor Cable Fabrication and Deployment

Distribution 
segment

 Modular cable includes:
 External strength member
 Distribution segments
 Sensor segments
 Connector protector
 Cable head

External 
member 

Connector 
protector

Cable head

Sensor 
segments Final loop 

connector
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Sensor Cable Fabrication and Deployment

Distribution 
segment

 Distribution segment includes eight standard
optical fibers:
 Four fibers connected to LEDs
 Four fibers connected to the photodetector.

Distribution cable
Length: 1,600 m

Total Fiber: 12,800 m

Photodetector
1 2 3 4

LEDs (Light Sources)

Distribution 
segment
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Sensor Cable Fabrication and Deployment

 Stainless steel tube (wire)
 Serves as support for sensor cable deployment
 Will be used during development for CO2

release.

Stainless 
steel tube 
spool

External 
strength 
member Stainless steel 

tube spool

Sensor 
cable spool
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Sensor Cable Fabrication and Deployment

Connector 
protector

Sensor segment 
& metallic tube

Distribution 
segment & 

metallic tube

Optical 
connector

 Connector protector
 Connects the stainless steel tube and the optical

cables
 Mechanically protects the optical connectors.
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Sensor Cable Fabrication and Deployment

Final loop 
connector

Loop optical 
connector

 Connector protector
 Connects the stainless steel tube and the optical

cables
 Mechanically protects the optical connectors.
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Sensor Cable Fabrication and Deployment

 Sensor segments
 Incorporate fiber optic sensors protected

mechanically but exposed to the aqueous (gas)
matrix.

Sensor 
segments

CO2 fiber 
sensors

Fiber 
sensors
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Sensor Cable Fabrication and Deployment

 Cable head
 Protects the cable during deployment.

Cable head

Cable 
head
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 Sensor deployment
 Release of CO2 at various depths
 System validation.

Proposed CO2 Sensor Well Number DOE-1

Well Test Configuration

20" 65#, H Conductor Pipe 150'
@150' in 26" hole

13 3/8" 54#, K-55 Surface Casing 
@1500' in 17 1/2" hole 1500'
Cemented to Surface

9 5/8" 53.5#, N80 Casing
@5350' in 12 1/4" hole
Cemented to Surface

Fiber Optic CO2 Sensor Cable

1/4in Stainless Tubing
Adjustable Depth for CO2 Injection

Plugged Back Depth 5250'

Ongoing and Planned Work
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 Demonstrated fiber optic sensor for CO2 monitoring in gas phase and 
for dissolved CO2 monitoring in aqueous matrices, capable of 
operating at elevated temperatures and pressure.

 Conducted Accelerated Degradation Tests under a variety of stress 
conditions, and evaluated sensor limitations and stability.

 Developed instrumentation demonstrating satisfactory performance 
while operating sensor cables 2 km in length. Calculations predict 
continued good performance for sensors 3 km and longer.

 Designed and fabricated sensor cables.
 Developed and preliminarily tested sensor deployment system and 

protocols.
 The system is being prepared for field deployment and testing by 

controlled release of CO2 in a deep well.

Conclusions
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