

# Development of a CO<sub>2</sub> Chemical Sensor for Downhole CO<sub>2</sub> Monitoring in Carbon Sequestration

Ning Liu

#### April 30, 2015

Petroleum Recovery Research Center New Mexico Institute of Mining and Technology, Socorro, NM 87801 Phone: (575) 835-5739; Fax: (575) 835 6721; Email: ningliu@nmt.edu



#### **Objectives:**

to develop a downhole  $CO_2$  sensor that can monitor  $CO_2$  plume migration in carbon sequestration. The proposed downhole  $CO_2$  sensor can resist high pressure, temperature, and high salinity.

Phase I – To develop a metal-oxide pH electrode with good stability and to understand different factors' effects on the performance of the electrode.

Phase II – To develop a downhole  $CO_2$  sensor and determine sensor performance under high pressure and high salinity.

Phase III – To evaluate the  $CO_2$  sensor's response in  $CO_2$ /brine coreflooding tests, and to develop a data acquisition system for the developed  $CO_2$  sensor.



#### Background



Figure 1. Schematic of CO<sub>2</sub> sequestration.





Figure 2. Schematic structure and picture of the fabricated  $CO_2$  sensor.



# $CO_2(g) + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$

$$E = E^o + \frac{2.303RT}{F} \log[H^+]$$

$$E = E^{o} + 59.15 \log \frac{k}{[HCO_{3}^{-}]} + 59.15 \log[CO_{2}]$$

$$\Delta E = 59.15 \log[CO_2] + k$$

## **Previous work**











. Micrograph of iridium oxide film prepared under  $870^{\circ}$  C and 5h: (a) overview of iridium wires before and after oxidation; (b) surface morphology of bare iridium wire; (c) surface morphology of iridium oxide; (d) Cross section of iridium oxide.



# Task 3.0 (1 year) Fabricate downhole CO<sub>2</sub> sensor and test the sensor at high pressure.

Subtask 2.1 Construct downhole CO<sub>2</sub> sensor

 $\succ$  Subtask 2.2 Test the performance of the CO<sub>2</sub> sensor

Subtask 2.3 Evaluate the CO<sub>2</sub> sensor in brine solution and high pressure



٠

. .

.

٠

#### CO<sub>2</sub> sensor preparation



Figure. 29 Schematic design and image of the downhole CO<sub>2</sub> sensor.

. .

#### Schematic diagram of the downhole CO<sub>2</sub> sensor test.





Potential response of the CO<sub>2</sub> sensor with time in different concentrations of CO<sub>2</sub> under 2000 psi



log[CO<sub>2</sub>] as a function of potential change at the pressure of 2000 psi.



Plot of response time of CO<sub>2</sub> sensor against CO<sub>2</sub> concentration at room temperature under 2,000 psi.

#### Performance of the CO<sub>2</sub> sensor under different pressure



| mg/L          | $Na^+$ | $Ca^{2+}$ | $Mg^{2+}$ | $K^+$ | Cl     | $SO_4^2$ | HCO <sub>3</sub> | TDS    |
|---------------|--------|-----------|-----------|-------|--------|----------|------------------|--------|
|               |        |           |           |       |        |          |                  |        |
| Permian Basin | 61842  | 3486      | 3524      | 180   | 108486 | 2017     | 134              | 180013 |
|               |        |           |           |       |        |          |                  |        |

 Table 1 The Compositions of Permian Basin Produced Waters
 [1]



#### Performance of the CO<sub>2</sub> sensor in synthetic produced water, pressure=2,000 psi



# Reproducibility test of the CO<sub>2</sub> sensor in [CO<sub>2</sub>]=1mM and pressure=2,000 psi



Time (min.)



Task 4.0 (1 year) Evaluate the  $CO_2$  sensor in  $CO_2$ /brine coreflooding tests and develop a data acquisition system for the downhole  $CO_2$  sensor.

> Subtask 4.1 Design and conduct  $CO_2$ /brine coreflooding tests

Subtask 4.2 Develop a data acquisition system to convert the output of the sensor signal into digital data

Subtask 4.3 Final report

## Schematic diagram of the coreflooding system



# **Picture of the coreflooding system**



# Mount the CO<sub>2</sub> sensor in the coreflooding system









#### **CO**<sub>2</sub> sensor performance during **CO**<sub>2</sub>/brine the coreflooding test



#### CO<sub>2</sub> sensor performance during CO<sub>2</sub>/brine the coreflooding test



#### CO<sub>2</sub> sensor performance during CO<sub>2</sub>/brine the coreflooding test



Time (min.)



- A downhole CO<sub>2</sub> sensor was constructed. The downhole CO<sub>2</sub> sensor could measure the dissolved CO<sub>2</sub> concentration under high pressure.
- A linear correlation was observed between the CO<sub>2</sub> sensor potential change and CO<sub>2</sub> concentration in water under 500 psi, 2,000 psi, and 3,000 psi.
- The downhole CO<sub>2</sub> sensor performed very well in synthetic produced water under 1,000 psi and exhibited good reproducibility under high pressure. A little potential shift was observed during the test. The shift of the potential contributed to some residual CO<sub>2</sub> in the internal solution.
- CO<sub>2</sub>/brine coreflooding system was construct and the CO<sub>2</sub> sensor was tested in different coreflooding tests. The sensor output potential was observed to increase after CO<sub>2</sub> was injected into the core.
- The CO<sub>2</sub> sensor could be recovered by waterflooding after CO<sub>2</sub>/brine flushed the core.



Task 4.0 (1 year) Evaluate the  $CO_2$  sensor in  $CO_2$ /brine coreflooding tests and develop a data acquisition system for the downhole  $CO_2$  sensor

- Develop a data acquisition system to convert the output of the sensor signal into digital data.
- Techno-economic Assessment/Final report



#### Acknowledgement

We gratefully acknowledge the support of:

- Department of Energy: DE-FE0009878,
- Petroleum Recovery Research Center at New Mexico Tech.