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Sensor Placement Problem

e Advanced Power Systems
— Integrated Gasification Combined Cycle (IGCC)

* Objectives
— Determine optimal location of network of sensors
— Minimize number of sensors in network
— Maximize Efficiency, Maximize Observability, Minimize Cost

e Constraints
— Mass and Energy Balances
— Environmental factors
— Sensor accuracy
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Model Uncertainties

e \/ariations to process variables lead directly to variations
in the gasification performance

e Plant with no sensors use models to control variations
— Soft sensing

— Introduces large errors in control resulting in large variations in
output variables

— Reduced observability
e Sensors reduce errors in control
e Cost of sensors is linked to errors in sensing

— High cost sensors, less variation
— Low cost sensors, high variation




Model Uncertainties
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Mixed Integer Nonlinear, Stochastic Optimization

Problem

Determine location of on-line sensors to maximize observability
of system, maximize efficiency subject to budget constraint
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Mass and Energy Balances around the Plant
c v = network of on-line sensors;
* f,dw = level of observability resulting from the

placement of sensor type rat location j;

E (v, yj) = efficiency as a nonlinear function of placement of sensor type 7
at location j



Multi-objective Optimization under Uncertainty
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Optimization under Uncertainty
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Important Properties of Sampling Technigques

* Independence / Randomness
o Uniformity

In most applications, the actual relationship between
successive points in a sample has no physical
significance, hence, randomness of the sample for
approximating a uniform distribution is not critical
(Knuth, 1973).

Once It Is apparent that the uniformity properties are
critical to the design of sampling technigues,
constrained or stratified sampling becomes appealing
(Morgan and Henrion, 1990).
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Novel Sampling Technique

e Hammersley Sequence Sampling (HSS) based on a
Quasi-random number generator

HSS sampling is at least 3 to 100 times faster than LHS
or MCS.

HSS Is preferred sampling for stochastic modeling and/or
stochastic optimization.
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Simulation Technique

e Simulate IGCC process N, times

— Comprehensive plant model in ASPEN Plus
environment

— Hammersley sequence sampling used to generate
uniform spaced samples across d-dimensional
sample space

e Better Optimization for Nonlinear Uncertain
Systems (BONUS) (Sahin and Diwekar, 2004)
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Model Uncertainties
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A Simple Multi-objective Linear Example

Max Z1 =06x1+ x2
/2 =-x1+ 3x2
subject to:
3x1 + 2x2 <12
3x1 + 6x2 <24
x1 <3
x1,x2 =0




Weighting Method: Max.Y=w,*Z,+®,*Z,

Objective Space
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Weighting Method: Max.Y=w,*Z,+®,*Z,

Objective Space
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Comparison of the New MINSOOP Algorithm
with the Conventional Method
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IGCC Process Flowchart & Sensor Placement

e Generate flowchart to determine downstream variables
* Definey;;=1(0)if variable j is downstream of variable i
e Distribution

f(y;)= fo(y,-)ls_m[(lwi,,-(m—lﬂ

i=1
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Important Input, Intermediate and

Output Variables
e |nput process variables

— 8 variables, including
e Oxygen, coal slurry, air flow rates
e Recycled HRSG steam temperature & pressure
e Gasifier temperature & pressure

e Intermediate and output process variables

— 24 variables, including
e Syngas flow rate, temperature, pressure
e CO, CO, flow rates
e Gas turbine combustor, high & low pressure
exhaust temperature
e Oxygen, coal, air flow rates into gasifier
o 532 & fines flow rates




osition\ Accuracy ->
Gasificer syngas flowrate
Syngas CO flowrate
Syngas CO?2 flowrate
Syngas temp.

Syngas pressure

LP steam turbine temp.
Gas turbine burn temp.
Gas turbine exit temp.

temp.
10 Gas turbine LP stream
temp.
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9 HP steam turbine flowrate
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1 Slag from syngas

2 Fines from syngas

3 Gasifier heat output

4 HRSG steam heat output
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Sample Space

e N, =800, uniformly distributed using
Hammersley sequence sampling method

Sensors placed on input variables with six-
sigma variation spanning +/-20% of the
nominal value

Resulting Fisher information about the
downstream variables obtained when no
sensors are placed in the network, /,/*(6, )
and reweighting

Resulting efficiency is obtained by
reweighting




Solutions

Maximize Observability:
Sensor Locations
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Conclusions

e Sensor placement in power plant is a stochastic
mixed integer nonlinear programming problem

e Novel sampling approach and BONUS algorithm can
solve this large scale stochastic programming
problem

Maximize efficiency, maximize observability and
minimize cost for good performance coverts the
problem into multi-objective stochastic
programming problem

Novel algorithmic framework can provide solution to
this real world problem.




