Introduction: NiAl-Strengthened Ferritic Alloys

A comparison of Larson-Miller parameter plots between FBB8 and other Fe-based materials candidates for steam turbine applications. TEM dark field image of FBB8 alloy with superlattice reflection.

Objective

- Introduction of new types of precipitates, (single Ni$_3$TiAl) precipitate-strengthened ferritic alloy [HPSFA].
- Understanding of the effect of precipitate structures on the creep behavior.

Schematic Illustration of Current Study

- First-Principles Calculations
- Experimental Validation

Optimization of creep properties of novel ferritic superalloys with a hierarchical structure

First-Principles Calculations

- Harmonic Transition-State Theory Assuming Vacancy Mechanism

Experimental Results

- In-Situ Neutron-Diffraction Creep Results

Future Works

1. Effects of aging temperatures and time on the hierarchical-precipitate structure and creep behavior of the 2% Ti alloy (coarsening behavior and optimization of Nb).
2. Systematic study of hierarchical-precipitate-strengthened ferritic alloys by substituting Ti with Hf, Ta, and Zr (introducing a new two-phase microstructure structure and its effect on the creep mechanical properties).
3. Systematic creep experiments of various temperatures and stresses on the new hierarchical-precipitate-strengthened ferritic alloys study of creep behavior and mechanisms.
4. Calculations of single-crystal elastic constants (C44 for L2$_1$-Ni$_3$Al, L2$_1$-Ni$_3$Al(N), and L2$_1$-Ni$_3$Al(N) from first principles morphology of precipitates and load partitioning condition in creep.
5. Calculations of interfacial energies for Fe-Cu-Al, Cu-Ni-Al, and Cu-Ni-Al from first principles investigation of the interface energy for various microstructural models to optimize the creep resistance.

Creep Properties

- In-Situ Neutron Diffraction Experiment Results
- Crystal-Plasticity Finite-Element Modeling Results

Experimental Results

- Fe-6.5Al-10Cr-10Ni-3.4Mo-2.0Ti-0.25Zr-0.15Nb (wt. %), HPSFA

4. From the in-situ neutron-diffraction experiments, a clear load transfer from the matrix to precipitate during loading and creep at 973 K.

Publication

Acknowledgments

The research is supported by the Department of Energy (DOE), Office of Fossil Energy Program, under Grants of DE-000670586, DE-FE0005868, DE-FE0001114, and DE-FE0024540 with Mr. Richard Dunand, Mr. Vito Cedro, Dr. Patricia Rasey, Dr. Steven Markovich, and Dr. Jessica Mufar as the program managers. The work has been performed by the Los Alamos Neutron Scattering Center (LNSC), which is funded by the Office of Basic Energy Sciences (OESDO), Los Alamos National Laboratory is operated by the Los Alamos National Security LLC under the DOE Contract number DE-AC05-76-0R3830. This research was supported by the Center for Nanophase Materials Sciences (CNMS) at the Oak Ridge National Laboratory (ORNL), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.